GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2021 Fall AMC 12B Problems"

(Created page with "{{AMC12 Problems|year=2021 Fall|ab=B}} ==Problem 1== What is the value of <math>1234+2341+3412+4123?</math> <math>(\textbf{A})\: 10{,}000\qquad(\textbf{B}) \: 10{,}010\qquad...")
 
Line 144: Line 144:
  
 
==Problem 15==
 
==Problem 15==
Recall that the conjugate of the complex number <math>w = a + bi</math>, where <math>a</math> and <math>b</math> are real numbers and <math>i = \sqrt{-1}</math>, is the complex number <math>\overline{w} = a - bi</math>. For any complex number <math>z</math>, let <math>f(z) = 4i\hspace{1pt}\overline{z}</math>. The polynomial <cmath>P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1</cmath> has four complex roots: <math>z_1</math>, <math>z_2</math>, <math>z_3</math>, and <math>z_4</math>. Let <cmath>Q(z) = z^4 + Az^3 + Bz^2 + Cz + D</cmath> be the polynomial whose roots are <math>f(z_1)</math>, <math>f(z_2)</math>, <math>f(z_3)</math>, and <math>f(z_4)</math>, where the coefficients <math>A,</math> <math>B,</math> <math>C,</math> and <math>D</math> are complex numbers. What is <math>B + D?</math>
+
Three identical square sheets of paper each with side length <math>6</math> are stacked on top of each other. The middle sheet is rotated clockwise <math>30^\circ</math> about its center and the top sheet is rotated clockwise <math>60^\circ</math> about its center, resulting in the <math>24</math>-sided polygon shown in the figure below. The area of this polygon can be expressed in the form <math>a-b\sqrt{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers, and <math>c</math> is not divisible by the square of any prime. What is <math>a+b+c</math>?
  
<math>(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304</math>
+
IMAGE
  
 +
<math>(\textbf{A})\: 75\qquad(\textbf{B}) \: 93\qquad(\textbf{C}) \: 96\qquad(\textbf{D}) \: 129\qquad(\textbf{E}) \: 147</math>
  
 
[[2021 Fall AMC 12B Problems/Problem 15|Solution]]
 
[[2021 Fall AMC 12B Problems/Problem 15|Solution]]
Line 174: Line 175:
  
 
==Problem 19==
 
==Problem 19==
Let <math>x</math> be the least real number greater than <math>1</math> such that sin<math>(x)</math> = sin<math>(x^2)</math>, where the arguments are in degrees. What is <math>x</math> rounded up to the closest integer?
+
Regular polygons with <math>5</math>, <math>6</math>, <math>7</math>, and <math>8</math> sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect?
  
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20</math>
+
<math>(\textbf{A})\: 52\qquad(\textbf{B}) \: 56\qquad(\textbf{C}) \: 60\qquad(\textbf{D}) \: 64\qquad(\textbf{E}) \: 68</math>
  
 
[[2021 Fall AMC 12B Problems/Problem 19|Solution]]
 
[[2021 Fall AMC 12B Problems/Problem 19|Solution]]
  
 
==Problem 20==
 
==Problem 20==
For each positive integer <math>n</math>, let <math>f_1(n)</math> be twice the number of positive integer divisors of <math>n</math>, and for <math>j \ge 2</math>, let <math>f_j(n) = f_1(f_{j-1}(n))</math>. For how many values of <math>n \le 50</math> is <math>f_{50}(n) = 12?</math>
+
A cube is constructed from <math>4</math> white unit cubes and <math>4</math> blue unit cubes. How many different ways are there to construct the <math>2 \times 2 \times 2</math> cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.)
  
<math>\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11</math>
+
<math>(\textbf{A})\: 7\qquad(\textbf{B}) \: 8\qquad(\textbf{C}) \: 9\qquad(\textbf{D}) \: 10\qquad(\textbf{E}) \: 11</math>
  
 
[[2021 Fall AMC 12B Problems/Problem 20|Solution]]
 
[[2021 Fall AMC 12B Problems/Problem 20|Solution]]

Revision as of 21:43, 23 November 2021

2021 Fall AMC 12B (Answer Key)
Printable versions: WikiFall AoPS ResourcesFall PDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of $1234+2341+3412+4123?$

$(\textbf{A})\: 10{,}000\qquad(\textbf{B}) \: 10{,}010\qquad(\textbf{C}) \: 10{,}110\qquad(\textbf{D}) \: 11{,}000\qquad(\textbf{E}) \: 11{,}110$

Solution

Problem 2

What is the area of the shaded figure shown below? [asy] size(200); defaultpen(linewidth(0.4)+fontsize(12)); pen s = linewidth(0.8)+fontsize(8);  pair O,X,Y; O = origin; X = (6,0); Y = (0,5); fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2)); for (int i=1; i<7; ++i) { draw((i,0)--(i,5), gray+dashed); label("${"+string(i)+"}$", (i,0), 2*S); if (i<6) { draw((0,i)--(6,i), gray+dashed); label("${"+string(i)+"}$", (0,i), 2*W); } } label("$0$", O, 2*SW); draw(O--X+(0.15,0), EndArrow); draw(O--Y+(0,0.15), EndArrow); draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5); [/asy]

$(\textbf{A})\: 4\qquad(\textbf{B}) \: 6\qquad(\textbf{C}) \: 8\qquad(\textbf{D}) \: 10\qquad(\textbf{E}) \: 12$

Solution

Problem 3

At noon on a certain day, Minneapolis is $N$ degrees warmer than St. Louis. At $4{:}00$ the temperature in Minneapolis has fallen by $5$ degrees while the temperature in St. Louis has risen by $3$ degrees, at which time the temperatures in the two cities differ by $2$ degrees. What is the product of all possible values of $N?$

$(\textbf{A})\: 10\qquad(\textbf{B}) \: 30\qquad(\textbf{C}) \: 60\qquad(\textbf{D}) \: 100\qquad(\textbf{E}) \: 120$

Solution

Problem 4

Let $n=8^{2022}$. Which of the following is equal to $\frac{n}{4}?$

$(\textbf{A})\: 4^{1010}\qquad(\textbf{B}) \: 2^{2022}\qquad(\textbf{C}) \: 8^{2018}\qquad(\textbf{D}) \: 4^{3031}\qquad(\textbf{E}) \: 4^{3032}$

Solution

Problem 5

Call a fraction $\frac{a}{b}$, not necessarily in the simplest form, special if $a$ and $b$ are positive integers whose sum is $15$. How many distinct integers can be written as the sum of two, not necessarily different, special fractions?

$\textbf{(A)}\ 9 \qquad\textbf{(B)}\  10 \qquad\textbf{(C)}\  11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$

Solution

Problem 6

The largest prime factor of $16384$ is $2$, because $16384 = 2^{14}$. What is the sum of the digits of the largest prime factor of $16383$?

$\textbf{(A) }3\qquad\textbf{(B) }7\qquad\textbf{(C) }10\qquad\textbf{(D) }16\qquad\textbf{(E) }22$

Solution

Problem 7

Which of the following conditions is sufficient to guarantee that integers $x$, $y$, and $z$ satisfy the equation \[x(x-y)+y(y-z)+z(z-x) = 1?\]

$\textbf{(A)} \: x>y$ and $y=z$ $\textbf{(B)} \: x=y-1$ and $y=z-1$ $\textbf{(C)} \: x=z+1$ and $y=x+1$ $\textbf{(D)} \: x=z$ and $y-1=x$ $\textbf{(E)} \: x+y+z=1$

Solution

Problem 8

Let $M$ be the least common multiple of all the integers $10$ through $30,$ inclusive. Let $N$ be the least common multiple of $M,32,33,34,35,36,37,38,39,$ and $40.$ What is the value of $\frac{N}{M}?$

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 37 \qquad\textbf{(D)}\ 74 \qquad\textbf{(E)}\ 2886$

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Una rolls $6$ standard $6$-sided dice simultaneously and calculates the product of the $6{ }$ numbers obtained. What is the probability that the product is divisible by $4?$

$\textbf{(A)}\: \frac34\qquad\textbf{(B)} \: \frac{57}{64}\qquad\textbf{(C)} \: \frac{59}{64}\qquad\textbf{(D)} \: \frac{187}{192}\qquad\textbf{(E)} \: \frac{63}{64}$

Solution

Problem 12

What is the number of terms with rational coefficients among the $1001$ terms in the expansion of $\left(x\sqrt[3]{2}+y\sqrt{3}\right)^{1000}?$

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 166 \qquad\textbf{(C)}\ 167 \qquad\textbf{(D)}\ 500 \qquad\textbf{(E)}\ 501$

Solution

Problem 13

The angle bisector of the acute angle formed at the origin by the graphs of the lines $y = x$ and $y=3x$ has equation $y=kx.$ What is $k?$

$\textbf{(A)} \ \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)} \ \frac{1+\sqrt{7}}{2} \qquad \textbf{(C)} \ \frac{2+\sqrt{3}}{2} \qquad \textbf{(D)} \ 2\qquad \textbf{(E)} \ \frac{2+\sqrt{5}}{2}$

Solution

Problem 14

In the figure, equilateral hexagon $ABCDEF$ has three nonadjacent acute interior angles that each measure $30^\circ$. The enclosed area of the hexagon is $6\sqrt{3}$. What is the perimeter of the hexagon? [asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F; draw(C--D--E--F--A--B--cycle,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); label("$C$",C,2*S); label("$D$",D,2*S); label("$E$",E,2*S); label("$F$",F,2*dir(0)); label("$A$",A,2*N); label("$B$",B,2*W); [/asy] $\textbf{(A)} \: 4 \qquad \textbf{(B)} \: 4\sqrt3 \qquad \textbf{(C)} \: 12 \qquad \textbf{(D)} \: 18 \qquad \textbf{(E)} \: 12\sqrt3$

Solution

Problem 15

Three identical square sheets of paper each with side length $6$ are stacked on top of each other. The middle sheet is rotated clockwise $30^\circ$ about its center and the top sheet is rotated clockwise $60^\circ$ about its center, resulting in the $24$-sided polygon shown in the figure below. The area of this polygon can be expressed in the form $a-b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers, and $c$ is not divisible by the square of any prime. What is $a+b+c$?

IMAGE

$(\textbf{A})\: 75\qquad(\textbf{B}) \: 93\qquad(\textbf{C}) \: 96\qquad(\textbf{D}) \: 129\qquad(\textbf{E}) \: 147$

Solution

Problem 16

An organization has $30$ employees, $20$ of whom have a brand A computer while the other $10$ have a brand B computer. For security, the computers can only be connected to each other and only by cables. The cables can only connect a brand A computer to a brand B computer. Employees can communicate with each other if their computers are directly connected by a cable or by relaying messages through a series of connected computers. Initially, no computer is connected to any other. A technician arbitrarily selects one computer of each brand and installs a cable between them, provided there is not already a cable between that pair. The technician stops once every employee can communicate with each other. What is the maximum possible number of cables used?

$\textbf{(A)}\ 190  \qquad\textbf{(B)}\  191 \qquad\textbf{(C)}\  192 \qquad\textbf{(D)}\  195 \qquad\textbf{(E)}\ 196$

Solution

Problem 17

For how many ordered pairs $(b,c)$ of positive integers does neither $x^2+bx+c=0$ nor $x^2+cx+b=0$ have two distinct real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16 \qquad$

Solution

Problem 18

Each of $20$ balls is tossed independently and at random into one of $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\  12 \qquad\textbf{(E)}\ 16$

Solution

Problem 19

Regular polygons with $5$, $6$, $7$, and $8$ sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect?

$(\textbf{A})\: 52\qquad(\textbf{B}) \: 56\qquad(\textbf{C}) \: 60\qquad(\textbf{D}) \: 64\qquad(\textbf{E}) \: 68$

Solution

Problem 20

A cube is constructed from $4$ white unit cubes and $4$ blue unit cubes. How many different ways are there to construct the $2 \times 2 \times 2$ cube using these smaller cubes? (Two constructions are considered the same if one can be rotated to match the other.)

$(\textbf{A})\: 7\qquad(\textbf{B}) \: 8\qquad(\textbf{C}) \: 9\qquad(\textbf{D}) \: 10\qquad(\textbf{E}) \: 11$

Solution

Problem 21

Solution

Problem 22

Azar and Carl play a game of tic-tac-toe. Azar places an in $X$ one of the boxes in a 3-by-3 array of boxes, then Carl places an $O$ in one of the remaining boxes. After that, Azar places an $X$ in one of the remaining boxes, and so on until all boxes are filled or one of the players has of their symbols in a row—horizontal, vertical, or diagonal—whichever comes first, in which case that player wins the game. Suppose the players make their moves at random, rather than trying to follow a rational strategy, and that Carl wins the game when he places his third $O$. How many ways can the board look after the game is over?

$\textbf{(A) } 36 \qquad\textbf{(B) } 112 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 148 \qquad\textbf{(E) } 160$

Solution

Problem 23

A quadratic polynomial with real coefficients and leading coefficient $1$ is called $\emph{disrespectful}$ if the equation $p(p(x))=0$ is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial $\tilde{p}(x)$ for which the sum of the roots is maximized. What is $\tilde{p}(1)$?

$\textbf{(A) } \frac{5}{16} \qquad\textbf{(B) } \frac{1}{2} \qquad\textbf{(C) } \frac{5}{8} \qquad\textbf{(D) } 1 \qquad\textbf{(E) } \frac{9}{8}$

Solution

Problem 24

Convex quadrilateral $ABCD$ has $AB = 18, \angle{A} = 60 \textdegree$, and $\overline{AB} \parallel \overline{CD}$. In some order, the lengths of the four sides form an arithmetic progression, and side $\overline{AB}$ is a side of maximum length. The length of another side is $a$. What is the sum of all possible values of $a$?

$\textbf{(A) } 24 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 60 \qquad \textbf{(D) } 66 \qquad \textbf{(E) } 84$

Solution

Problem 25

Let $m\ge 5$ be an odd integer, and let $D(m)$ denote the number of quadruples $\big(a_1, a_2, a_3, a_4\big)$ of distinct integers with $1\le a_i \le m$ for all $i$ such that $m$ divides $a_1+a_2+a_3+a_4$. There is a polynomial \[q(x) = c_3x^3+c_2x^2+c_1x+c_0\]such that $D(m) = q(m)$ for all odd integers $m\ge 5$. What is $c_1?$

$(\textbf{A})\: {-}6\qquad(\textbf{B}) \: {-}1\qquad(\textbf{C}) \: 4\qquad(\textbf{D}) \: 6\qquad(\textbf{E}) \: 11$

Solution

See also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
2021 Fall AMC 12B Problems
Followed by
[[2021 Fall AMC 12A Problems/Problem {{{num-a}}}|Problem {{{num-a}}}]]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png