Difference between revisions of "2023 AMC 12B Problems/Problem 6"

(Solution 1)
(redirect)
Line 1: Line 1:
 +
{{duplicate|[[2023 AMC 10B Problems/Problem 12|2023 AMC 10B #12]] and [[2023 AMC 12B Problems/Problem 6|2023 AMC 12B #6]]}}
 +
 +
==Problem==
 +
When the roots of the polynomial
 +
 +
<math>P(x)  = (x-1)^1 (x-2)^2 (x-3)^3 \cdot \cdot \cdot (x-10)^{10}</math>
 +
 +
are removed from the number line, what remains is the union of 11 disjoint open intervals. On how many of these intervals is <math>P(x)</math> positive?
 +
 
==Solution 1==
 
==Solution 1==
  
Line 4: Line 13:
  
 
~<math>\textbf{Techno}\textcolor{red}{doggo}</math>
 
~<math>\textbf{Techno}\textcolor{red}{doggo}</math>
 +
 +
==Solution 2==
 +
 +
Denote by <math>I_k</math> the interval <math>\left( k - 1 , k \right)</math> for <math>k \in \left\{ 2, 3, \cdots , 10 \right\}</math> and <math>I_1</math> the interval <math>\left( - \infty, 1 \right)</math>.
 +
 +
Therefore, the number of intervals that <math>P(x)</math> is positive is
 +
<cmath>
 +
\begin{align*}
 +
1 + \sum_{i=1}^{10} \Bbb I \left\{
 +
\sum_{j=i}^{10} j \mbox{ is even}
 +
\right\}
 +
& = 1 + \sum_{i=1}^{10} \Bbb I \left\{
 +
\frac{\left( i + 10 \right) \left( 11 - i \right)}{2} \mbox{ is even}
 +
\right\} \\
 +
& = 1 + \sum_{i=1}^{10} \Bbb I \left\{
 +
\frac{- i^2 + i + 110}{2} \mbox{ is even}
 +
\right\} \\
 +
& = 1 + \sum_{i=1}^{10} \Bbb I \left\{
 +
\frac{i^2 - i}{2} \mbox{ is odd}
 +
\right\} \\
 +
& = \boxed{\textbf{(C) 6}} .
 +
\end{align*}
 +
</cmath>
 +
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
  
 
==See Also==
 
==See Also==
 +
{{AMC10 box|year=2023|ab=B|num-b=11|num-a=13}}
 
{{AMC12 box|year=2023|ab=B|num-b=5|num-a=7}}
 
{{AMC12 box|year=2023|ab=B|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:32, 15 November 2023

The following problem is from both the 2023 AMC 10B #12 and 2023 AMC 12B #6, so both problems redirect to this page.

Problem

When the roots of the polynomial

$P(x)  = (x-1)^1 (x-2)^2 (x-3)^3 \cdot \cdot \cdot (x-10)^{10}$

are removed from the number line, what remains is the union of 11 disjoint open intervals. On how many of these intervals is $P(x)$ positive?

Solution 1

$P(x)$ is a product of $(x-r_n)$ or 10 terms. When $x < 1$, all terms are $< 0$, but $P(x) > 0$ because there is an even number of terms. The sign keeps alternating $+,-,+,-,....,+$. There are 11 intervals, so there are $\boxed{\textbf{6}}$ positives and 5 negatives. $\boxed{\textbf{(C) 6}}$

~$\textbf{Techno}\textcolor{red}{doggo}$

Solution 2

Denote by $I_k$ the interval $\left( k - 1 , k \right)$ for $k \in \left\{ 2, 3, \cdots , 10 \right\}$ and $I_1$ the interval $\left( - \infty, 1 \right)$.

Therefore, the number of intervals that $P(x)$ is positive is \begin{align*} 1 + \sum_{i=1}^{10} \Bbb I \left\{  \sum_{j=i}^{10} j \mbox{ is even}   \right\}   & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{\left( i + 10 \right) \left( 11 - i \right)}{2} \mbox{ is even}   \right\} \\  & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{- i^2 + i + 110}{2} \mbox{ is even}   \right\} \\  & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{i^2 - i}{2} \mbox{ is odd}   \right\} \\  & = \boxed{\textbf{(C) 6}} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


See Also

2023 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png