hard inequalities

by pennypc123456789, Apr 30, 2025, 12:12 AM

Given $x,y,z$ be the positive real number. Prove that

$\frac{2xy}{\sqrt{2xy(x^2+y^2)}} + \frac{2yz}{\sqrt{2yz(y^2+z^2)}} + \frac{2xz}{\sqrt{2xz(x^2+z^2)}} \le \frac{2(x^2+y^2+z^2) + xy+yz+xz}{x^2+y^2+z^2}$

Easy Combinatorial Game Problem in Taiwan TST

by chengbilly, Mar 5, 2025, 5:05 AM

Alice and Bob are playing game on an $n \times n$ grid. Alice goes first, and they take turns drawing a black point from the coordinate set
\[\{(i, j) \mid i, j \in \mathbb{N}, 1 \leq i, j \leq n\}\]There is a constraint that the distance between any two black points cannot be an integer. The player who cannot draw a black point loses. Find all integers $n$ such that Alice has a winning strategy.

Proposed by chengbilly
This post has been edited 1 time. Last edited by chengbilly, Mar 5, 2025, 5:09 AM
L

Cute R+ fe

by Aryan-23, Jan 27, 2024, 2:57 PM

Find all functions $f\colon \mathbb R^+ \mapsto \mathbb R^+$, such that for all positive reals $x,y$, the following is true:

$$xf(1+xf(y))= f\left(f(x) + \frac 1y\right)$$
Kazi Aryan Amin
This post has been edited 1 time. Last edited by Aryan-23, Jan 27, 2024, 2:58 PM

2 variable functional equation in integers

by Supercali, Dec 20, 2022, 12:08 PM

Find all functions $f:\mathbb{Z} \rightarrow \mathbb{Z}$ satisfying
$$f(x+f(xy))=f(x)+xf(y)$$for all integers $x,y$.

Tiling problem (Combinatorics or Number Theory?)

by Rukevwe, May 2, 2022, 8:56 PM

A unit square is removed from the corner of an $n \times n$ grid, where $n \geq 2$. Prove that the remainder can be covered by copies of the figures of $3$ or $5$ unit squares depicted in the drawing below.
[asy]
import geometry;

draw((-1.5,0)--(-3.5,0)--(-3.5,2)--(-2.5,2)--(-2.5,1)--(-1.5,1)--cycle);
draw((-3.5,1)--(-2.5,1)--(-2.5,0));

draw((0.5,0)--(0.5,3)--(1.5,3)--(1.5,1)--(3.5,1)--(3.5,0)--cycle);
draw((1.5,0)--(1.5,1));
draw((2.5,0)--(2.5,1));
draw((0.5,1)--(1.5,1));
draw((0.5,2)--(1.5,2));
[/asy]

Note: Every square must be covered once and figures must not go over the bounds of the grid.
This post has been edited 2 times. Last edited by Rukevwe, May 6, 2022, 2:54 PM

Another perpendicular to the Euler line

by darij grinberg, Mar 11, 2022, 1:01 PM

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$.

[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2;
A = (-14.8, -6.6);
B = (-10.9, 0.3);
C = (-3.1, -7.1);
O = circumcenter(A,B,C);
H = orthocenter(A,B,C);
P = 1.2 * H - 0.2 * A;
Q = reflect(A, C) * P;
R = reflect(A, B) * P;
Y = foot(R, C, A);
Z = foot(Q, A, B);
P2 = foot(A, B, C);
Q2 = foot(P, C, A);
R2 = foot(P, A, B);
draw(B--(1.6*A-0.6*B));
draw(B--C--A);
draw(P--R, blue);
draw(R--Y, red);
draw(P--Q, blue);
draw(Q--Z, red);
draw(A--P2, blue);
draw(O--H, darkgreen+linewidth(1.2));
draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2));
draw(rightanglemark(R,Y,A,10), red);
draw(rightanglemark(Q,Z,B,10), red);
draw(rightanglemark(C,Q2,P,10), blue);
draw(rightanglemark(A,R2,P,10), blue);
draw(rightanglemark(B,P2,H,10), blue);
label("$\textcolor{blue}{H}$",H,NW);
label("$\textcolor{blue}{P}$",P,N);
label("$A$",A,W);
label("$B$",B,N);
label("$C$",C,S);
label("$O$",O,S);
label("$\textcolor{blue}{Q}$",Q,E);
label("$\textcolor{blue}{R}$",R,W);
label("$\textcolor{red}{Y}$",Y,S);
label("$\textcolor{red}{Z}$",Z,NW);
dot(A, filltype=FillDraw(black));
dot(B, filltype=FillDraw(black));
dot(C, filltype=FillDraw(black));
dot(H, filltype=FillDraw(blue));
dot(P, filltype=FillDraw(blue));
dot(Q, filltype=FillDraw(blue));
dot(R, filltype=FillDraw(blue));
dot(Y, filltype=FillDraw(red));
dot(Z, filltype=FillDraw(red));
dot(O, filltype=FillDraw(black));
[/asy]

Integer Functional Equation

by mathlogician, Sep 11, 2020, 11:52 PM

Let $f\colon\mathbb{N} \to \mathbb{N}$ be a function that satisfies$$\frac{ab}{f(a)} + \frac{ab}{f(b)} = f(a+b)$$for all positive integer pairs $(a,b).$ Find all possible functions $f.$

(Here, we define $\mathbb{N}$ as the set of all positive integers.)

Finding all integers with a divisibility condition

by Tintarn, Jun 22, 2020, 4:09 PM

Determine all positive integers $n$ for which there exists a positive integer $d$ with the property that $n$ is divisible by $d$ and $n^2+d^2$ is divisible by $d^2n+1$.

H not needed

by dchenmathcounts, May 23, 2020, 11:00 PM

Let $ABCD$ be a cyclic quadrilateral. A circle centered at $O$ passes through $B$ and $D$ and meets lines $BA$ and $BC$ again at points $E$ and $F$ (distinct from $A,B,C$). Let $H$ denote the orthocenter of triangle $DEF.$ Prove that if lines $AC,$ $DO,$ $EF$ are concurrent, then triangle $ABC$ and $EHF$ are similar.

Robin Son
This post has been edited 2 times. Last edited by v_Enhance, Oct 25, 2020, 6:01 AM
Reason: backdate

Find all functions

by WakeUp, Nov 19, 2010, 6:41 PM

Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]
for all $x,y\in\mathbb{R}$.
This post has been edited 1 time. Last edited by WakeUp, Nov 19, 2010, 8:18 PM
Archives
- September 2012
Tags
About Owner
  • Posts: 0
  • Joined: Nov 21, 2009
Search Blog
a