Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
The smallest of sum of elements
hlminh   1
N 10 minutes ago by nguyenhuybao_06
Let $S=\{1,2,...,2014\}$ and $X\subset S$ such that for all $a,b\in X,$ if $a+b\leq 2014$ then $a+b\in X.$ Find the smallest of sum of all elements of $X.$
1 reply
hlminh
21 minutes ago
nguyenhuybao_06
10 minutes ago
Inequalities
Scientist10   0
18 minutes ago
If $x, y, z \in \mathbb{R}$, then prove that the following inequality holds:
\[
\sum_{\text{cyc}} \sqrt{1 + \left(x\sqrt{1 + y^2} + y\sqrt{1 + x^2}\right)^2} \geq \sum_{\text{cyc}} xy + 2\sum_{\text{cyc}} x
\]
0 replies
Scientist10
18 minutes ago
0 replies
NT from ukr contest
mshtand1   3
N 18 minutes ago by ravengsd
Source: Ukrainian TST for RMM 2021(2) and EGMO 2022 P2
Find the greatest positive integer $n$ such that there exist positive integers $a_1, a_2, ..., a_n$ for which the following holds $a_{k+2} = \dfrac{(a_{k+1}+a_k)(a_{k+1}+1)}{a_k}$ for all $1 \le k \le n-2$.
Proposed by Mykhailo Shtandenko and Oleksii Masalitin
3 replies
mshtand1
Oct 2, 2021
ravengsd
18 minutes ago
Posted before ,but no solution
Nuran2010   1
N 18 minutes ago by Nuran2010
Source: 1220 Number Theory Problems
Find all positive integers $n$ where $49n^3+42n^2+11n+1$ is a perfect cube
1 reply
Nuran2010
Apr 11, 2025
Nuran2010
18 minutes ago
APMO 2012 #3
syk0526   30
N 32 minutes ago by EVKV
Source: APMO 2012 #3
Determine all the pairs $ (p , n )$ of a prime number $ p$ and a positive integer $ n$ for which $ \frac{ n^p + 1 }{p^n + 1} $ is an integer.
30 replies
syk0526
Apr 2, 2012
EVKV
32 minutes ago
Problem 1
SpectralS   146
N an hour ago by YaoAOPS
Given triangle $ABC$ the point $J$ is the centre of the excircle opposite the vertex $A.$ This excircle is tangent to the side $BC$ at $M$, and to the lines $AB$ and $AC$ at $K$ and $L$, respectively. The lines $LM$ and $BJ$ meet at $F$, and the lines $KM$ and $CJ$ meet at $G.$ Let $S$ be the point of intersection of the lines $AF$ and $BC$, and let $T$ be the point of intersection of the lines $AG$ and $BC.$ Prove that $M$ is the midpoint of $ST.$

(The excircle of $ABC$ opposite the vertex $A$ is the circle that is tangent to the line segment $BC$, to the ray $AB$ beyond $B$, and to the ray $AC$ beyond $C$.)

Proposed by Evangelos Psychas, Greece
146 replies
SpectralS
Jul 10, 2012
YaoAOPS
an hour ago
Number theory or function ?
matematikator   15
N an hour ago by YaoAOPS
Source: IMO ShortList 2004, algebra problem 3
Does there exist a function $s\colon \mathbb{Q} \rightarrow \{-1,1\}$ such that if $x$ and $y$ are distinct rational numbers satisfying ${xy=1}$ or ${x+y\in \{0,1\}}$, then ${s(x)s(y)=-1}$? Justify your answer.

Proposed by Dan Brown, Canada
15 replies
matematikator
Mar 18, 2005
YaoAOPS
an hour ago
hard problem
Cobedangiu   7
N an hour ago by arqady
Let $a,b,c>0$ and $a+b+c=3$. Prove that:
$\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a} \le \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3$
7 replies
Cobedangiu
Apr 21, 2025
arqady
an hour ago
Bounding number of solutions for floor function equation
Ciobi_   1
N 2 hours ago by sarjinius
Source: Romania NMO 2025 9.3
Let $n \geq 2$ be a positive integer. Consider the following equation: \[ \{x\}+\{2x\}+ \dots + \{nx\} = \lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor 2nx \rfloor\]a) For $n=2$, solve the given equation in $\mathbb{R}$.
b) Prove that, for any $n \geq 2$, the equation has at most $2$ real solutions.
1 reply
Ciobi_
Apr 2, 2025
sarjinius
2 hours ago
nice system of equations
outback   4
N 2 hours ago by Raj_singh1432
Solve in positive numbers the system

$ x_1+\frac{1}{x_2}=4, x_2+\frac{1}{x_3}=1, x_3+\frac{1}{x_4}=4, ..., x_{99}+\frac{1}{x_{100}}=4, x_{100}+\frac{1}{x_1}=1$
4 replies
outback
Oct 8, 2008
Raj_singh1432
2 hours ago
Two circles, a tangent line and a parallel
Valentin Vornicu   103
N 3 hours ago by zuat.e
Source: IMO 2000, Problem 1, IMO Shortlist 2000, G2
Two circles $ G_1$ and $ G_2$ intersect at two points $ M$ and $ N$. Let $ AB$ be the line tangent to these circles at $ A$ and $ B$, respectively, so that $ M$ lies closer to $ AB$ than $ N$. Let $ CD$ be the line parallel to $ AB$ and passing through the point $ M$, with $ C$ on $ G_1$ and $ D$ on $ G_2$. Lines $ AC$ and $ BD$ meet at $ E$; lines $ AN$ and $ CD$ meet at $ P$; lines $ BN$ and $ CD$ meet at $ Q$. Show that $ EP = EQ$.
103 replies
Valentin Vornicu
Oct 24, 2005
zuat.e
3 hours ago
Inequalities
idomybest   3
N 3 hours ago by damyan
Source: The Interesting Around Technical Analysis Three Variable Inequalities
The problem is in the attachment below.
3 replies
idomybest
Oct 15, 2021
damyan
3 hours ago
Function on positive integers with two inputs
Assassino9931   2
N 3 hours ago by Assassino9931
Source: Bulgaria Winter Competition 2025 Problem 10.4
The function $f: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is such that $f(a,b) + f(b,c) = f(ac, b^2) + 1$ for any positive integers $a,b,c$. Assume there exists a positive integer $n$ such that $f(n, m) \leq f(n, m + 1)$ for all positive integers $m$. Determine all possible values of $f(2025, 2025)$.
2 replies
Assassino9931
Jan 27, 2025
Assassino9931
3 hours ago
Normal but good inequality
giangtruong13   4
N 3 hours ago by IceyCold
Source: From a province
Let $a,b,c> 0$ satisfy that $a+b+c=3abc$. Prove that: $$\sum_{cyc} \frac{ab}{3c+ab+abc} \geq \frac{3}{5} $$
4 replies
giangtruong13
Mar 31, 2025
IceyCold
3 hours ago
Junior Balkan Mathematical Olympiad 2024- P3
Lukaluce   14
N Apr 11, 2025 by ray66
Source: JBMO 2024
Find all triples of positive integers $(x, y, z)$ that satisfy the equation

$$2020^x + 2^y = 2024^z.$$
Proposed by Ognjen Tešić, Serbia
14 replies
Lukaluce
Jun 27, 2024
ray66
Apr 11, 2025
Junior Balkan Mathematical Olympiad 2024- P3
G H J
Source: JBMO 2024
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Lukaluce
267 posts
#1 • 3 Y
Y by Sedro, farhad.fritl, ItsBesi
Find all triples of positive integers $(x, y, z)$ that satisfy the equation

$$2020^x + 2^y = 2024^z.$$
Proposed by Ognjen Tešić, Serbia
This post has been edited 1 time. Last edited by Lukaluce, Jun 28, 2024, 12:36 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
giannis2006
45 posts
#2 • 1 Y
Y by farhad.fritl
We have the following cases:
$1) y>2x$. Then we get that: $2^{2x}(505^x+2^{y-2x})=2^{3z}253^z$,so $2x=v_2(LHS)=v_2(RHS)=3z$ and hence $505^x+2^{y-2x}=253^z$, which is a contradiction by $mod 3$
$2) y<2x$. Then we get that: $2^y(2^{2x-y}505^x+1)= 2^{3z}505^z$ With the same way as case $1$ we get that $y=3z$ and hence $2^{2x-y}505^x+1=253^z$, which is a contradiction by $ mod 3$.
$3) y=2x$. Then we get that: $2^{2x}(505^x+1)=2^{3z}253^z$
$505^x+1  \equiv 2 mod 4$, and hence $2x+1=v_2(LHS)=v_2(RHS)=3z$, so equivalently we have that $505^x+1=2*253^z=2*253^{\frac {2x+1} {3}}$, which has only $x=1$ as a positive integer solution. So, in this case $(x,y,z)=(1,2,1)$ ,which is the only solution of the given equation.
This post has been edited 2 times. Last edited by giannis2006, Jun 27, 2024, 11:47 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
P2nisic
406 posts
#3
Y by
Consider $U_2$ we get:
$2x=3z$ contradiction since then $LHS>RHS$
$y=3z$ then $2020^x=2024^z-8^z=2016[...]$ contradiction since $7|2016$ but not $2020$
$y=2x$ we have that $2^{2x}(505^x+1)=2^{3z}*253^z$ or $505^x+1=2^{3z-2x}*253^z$
Consider $mod4$ we get that $3z-2x=1$ and then from inelyalites esily get $x=1,y=2,z=1$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Z4ADies
63 posts
#4
Y by
First,assume that $x \geq 2 $ and $y \geq 3$.
In first case we will inspect $2x=y$.
Then,from taking both sides' power, $2x=y=3z$.
It is known that,$x>z$ but, $505^x+1=253^z$ which is contradiction.
In second case we will inspect $2x>y$.
Like first method,we get $y=3z$ then, $2x>3z$.
So, $2^{2x-y}.505^x+1 \geq 2.505^x+1 >253^z$
contradiction again.
In third case we will look $y>2x$.
From getting power both sides, we found that,$2x=3z$.$505^x+2^{y-2x}=253^z$ obviously contradicition.
So,$x=1,y=2,z=1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1250 posts
#5
Y by
Proposed by Serbia. Do not get negatively fooled by the classical looking statement -- the various possible approaches here can teach students a lot of important ideas!

Proposer solution, powers of 2 and size arguments

My solution, moduli and Fermat classics
This post has been edited 2 times. Last edited by Assassino9931, Jun 27, 2024, 2:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
OgnjenTesic
39 posts
#6 • 7 Y
Y by Assassino9931, oVlad, Sedro, Math_.only., ehuseyinyigit, farhad.fritl, mrtheory
Proposed by me (Ognjen Tešić, Serbia).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Marinchoo
407 posts
#7
Y by
Taking the equation modulo $5$ yields $y$ is even, so $y=2y_1$. Now if $x\neq y_1$ we have \[2x\geq \nu_{2}(2020^x+2^y)=\min\{2x, 2y_1\}=\nu_{2}(2024^z)=3z.\]However, $2x<3z$ as $2024^z>2020^x>2024^{\frac{2}{3}x}$. Therefore $x=y_1$, and the equation becomes $4^x(505^x+1)=2024^z$. Modulo $11$ implies $x$ is odd, at which point $\nu_2(505^x+1)=\nu_2(506)=1$. Comparing the $\nu_2$'s of both sides gives $2x+1=3z$, so $x=3t+1$, $z=2t+1$ for some nonnegative integer $t$. Clearly, $t=0$ leads to the solution $(x, y, z) = (1, 2, 1)$. When $t>0$ we derive a contradiction from:
\[1>\frac{2020^{3t+1}}{2024^{2t+1}}=\frac{505}{506}\cdot \left(\frac{2020^3}{2024^2}\right)^t\geq \frac{505}{506}\cdot \left(\frac{2020^3}{2024^2}\right)>1.\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Davut1102
22 posts
#8
Y by
..........
This post has been edited 1 time. Last edited by Davut1102, Jul 1, 2024, 1:35 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sedro
5838 posts
#9
Y by
The only solution is $(x,y,z) = (1,2,1)$, which obviously works. We now prove it is the only one.

Claim: $y=2x$.

Proof: Take both sides of the equation modulo $3$ to get $1+2^y\equiv 2^z \pmod{3}$. Clearly, we must have $2^y \equiv 1 \pmod{3}$, so $y$ is even and $z$ is odd. Let $y = 2y_0$, for a positive integer $y_0$. Then, the given equation becomes $2020^x + 4^{y_0} = 2024^z$. Note that $v_2(2024^z) = 3z$ is always odd. Since $v_2(4)$ and $v_2(2020)$ are both even, it follows if $v_2(2020^x)\ne v_2(4^{y_0})$, then either $v_2(2020^x + 4^{y_0}) = v_2(2020^x) = 2x$ or $v_2(2020^x + 4^{y_0}) = v_2(4^{y_0})=2y_0$, neither of which are odd. Thus, $v_2(2020^x) = v_2(4^{y_0})$. Because $v_2(2020)=v_2(4)$, we must have $x=y_0$, and our claim follows.

Claim: The only possible value of $x$ is $1$.

Proof: Rewrite the given equation as $4^x(505^x + 1^x) = 2024^z$. Note that when $x=1$, $505^1+1^1=506$ is divisible by all the prime factors of $2024$, which are $2$, $11$, and $23$. If $x>1$, by Zsigmondy, there exists some $p\notin \{2,11,23\}$ that divides $505^x + 1^x$, and hence it is impossible that $505^x+1^x \mid 2024^z$. Thus, $x=1$, and we are done. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megarnie
5593 posts
#10
Y by
The only solution is $(1,2,1)$, which clearly works.

Notice that taking the equation mod $7$ gives $4^x + 2^y \equiv 1 \pmod 7$. Since $4^3 \equiv 2^3 \equiv 1\pmod 7$, if $3$ divided either one of $x$ or $y$, then we have that one of $4^x, 2^y$ is $0\pmod 7$, which is absurd. Hence $3\nmid xy$.

Hence $\nu_2(2020^x), \nu_2(2^y)$ are both not multiples of $3$, so they cannot be equal to $ \nu_2(2024^z)$. If $\nu_2(2020^x) \ne \nu_2(2^y)$, then we would have $\nu_2(2024^z) = \nu_2(2020^x + 2^y) \in \{\nu_2(2020^x) , \nu_2(2^y)\}$, which is absurd, so $\nu_2(2020^x) = \nu_2(2^y)$, so $2x = y$. Now we have \[ 2020^x + 4^x = 2024^z \]If $x > 1$, then by Zsigmondy there exists a prime $p$ not dividing $2020^1 + 4^1 = 2024$ that divides $2020^x + 4^x$, absurd. Hence $x = 1$ must hold.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WallyWalrus
911 posts
#11
Y by
$\textbf{A) }$Working in modulo $10$, we obtain:
The last digit of $2020^x$ is $0$ for all $x\in\mathbb{N}$.

The last digit of $2^y$ is $\begin{cases}2,\text{ for y }\equiv 1\pmod4\\4,\text{ for y }\equiv 2\pmod4\\8,\text{ for y }\equiv 3\pmod4\\6,\text{ for y }\equiv 0\pmod4\end{cases}$

The last digit of $2024^z$ is $\begin{cases}4,\text{ for z }\equiv 1\pmod2\\6,\text{ for z }\equiv 0\pmod2\end{cases}$

Results: $y=2w,\;w\in\mathbb{N}$ and $w-z\equiv0\pmod2$.
The equation becomes:
$2020^x+4^w=2024^z$, where $w,z$ have the same parity $\quad\textbf{(1)}$.

$\textbf{B) }$Working in modulo $3$, we obtain:
$2020^x\equiv1\pmod3;\;4^w\equiv1\pmod3\Longrightarrow 2024^z\equiv2\pmod3\Longrightarrow z$ is odd number $\Longrightarrow w$ is odd number.

$\textbf{Case 1: }\min\{x,w,z\}=w;\;w\le x;\;w\le z$.
Dividing in $\textbf{(1)}$ by $4^w$ results:
$505^x\cdot 4^{x-w}+1=506^z\cdot 4^{z-w}$.
$z-w$ is an even non-negative number and results: the last digit of $506^z\cdot 4^{z-w}$ is $6$.
The last digit of $505^x\cdot 4^{x-w}$ must be $5$, hence $x=w$ and we obtain
$505^x+1=506^z\cdot 4^{z-w}$.
Working in modulo $4$ in the last relation, results:
$505^x\equiv1\pmod4\Longrightarrow 506^z\cdot 4^{z-w}\equiv2\pmod4\Longrightarrow$
$\Longrightarrow z-w=0;\;z=1\Longrightarrow x=w=z=1\Longrightarrow y=2$
and the triplet $(x,y,z)=(1,2,1)$ is solution of the equation $2020^x+2^y=2024^z$.

$\textbf{Case 2: }\min\{x,w,z\}=x;\;x<w;\;x\le z$.
Dividing in $\textbf{(1)}$ by $4^x$ results:
$505^x+4^{w-x}=506^z\cdot 4^{z-x}$.
$505^x$ is odd number; $4^{w-x}$ and $506^z\cdot 4^{z-x}$ are even numbers, hence the last equation has no solutions.

$\textbf{Case 3: }\min\{x,w,z\}=z;\;z<x;\;z<w$.
$2020^x+4^w=2024^z$.
$v_2(2024^z)=3z$, odd number (see $\textbf{B)}$).

$\textbf{case 3.1: }x<w$
$2020^x+4^w=4^x(505^x+4^{w-x})\Longrightarrow v_2(2020^x+4^w)=2x$, even number, hence the equation has no solutions.

$\textbf{case 3.2: }x>w$
$2020^x+4^w=4^w(505^x\cdot4^{x-w}+1)\Longrightarrow v_2(2020^x+4^w)=2w$, even number, hence the equation has no solutions.

$\textbf{case 3.3: }x=w$
$2020^x+4^x=2024^z$.
$z=2u+1;\;x=w>z$, where $u\in\mathbb{N}\cup\{0\}$ (see $\textbf{B)}$).
$2020^x+4^x=4^x(505^x+1)$.
$505^x+1\equiv2\pmod4\Longrightarrow v_2(505^x+1)=1\Longrightarrow$
$\Longrightarrow v_2(2020^x+4^x)=v_2(4^x(505^x+1))=2x+1=3z\Longrightarrow$
$\Longrightarrow 2x+1=6u+3\Longrightarrow x=w=3u+1;\;z=2u+1$.
$x>z\Longrightarrow u>0$.
The equation becomes:
$2020^{3u+1}+4^{3u+1}=2024^{2u+1}\Longrightarrow 505^{3u+1}+1=2\cdot253^{2u+1}\Longrightarrow$
$\Longrightarrow 505\cdot505^{3u}+1=506\cdot253^{2u}$, contradiction since
$505\cdot505^{3u}>506\cdot253^{2u},\;\forall u\in\mathbb{N}$ (proved many times in the previous posts).

$\textbf{Conclusion:}$
The equation in positive integers $2020^x+2^y=2024^z$ has the unique solution $(x,y,z)=(1,2,1)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
PaixiaoLover
123 posts
#13
Y by
take mod 3 to get $1+(-1)^y=(-1)^z$. Because of this, we know y must be even and z must be odd.

Let $y=2y_1$ and $z=2z_1+1$. Prime factorizing the original equation, $2^{2x}\cdot505^x+2^{2y_1}=2^{6z_1+3}
\cdot253^{2z_1+1}$

Now considering the largest factor of 2 that divides the LHS, if $2y_1$ is the smallest factor, then $2y_1=6z_1+3$, impossible. Similarly, if 2x is the largest factor of 2, $2x=6z_1+3$ is impossible. This means $2x=2y_1$ and the factor of 2 on the LHS is $2^{2x+1}$ since the v2 of $505^{x}+1$ is at 2. (since its 0 mod 2 and not 0 mod 4). So we have $2x+1=3z_1$

Going back, we have $x=x, y=2x, z=\frac{2x+1}{3}$. since $\frac{2x+1}{3}$ is an integer, set $x=3k+1$ Plugging in and dividing by largest factor of 2 we get $505^{3k+1}+1=2\cdot253^{2k+1}.$ k=0 works, but any larger k dosent work since $505^{3k+1}+1 > 505 \cdot 505^{3k} > 506 \cdot 253^{2k}$ so the only solution is k=0, which represents $(x,y,z)=(1,2,1)$
This post has been edited 1 time. Last edited by PaixiaoLover, Jan 3, 2025, 7:56 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ItsBesi
142 posts
#14
Y by
Here is my solution:

Answer: $(x,y,z)=(1,2,1)$

Solution:

Claim: $y-$even and $z-$odd
Proof:

By taking $\pmod 3$ we get:

$1+(-1)^y \equiv (-1)^z \pmod 3$ if $y-$ even then: $(-1)^z \equiv 0 \pmod 3$ which is a contradiction so $\boxed{y-\text{even}}$

Hence $(-1)^z \equiv -1 \pmod 3 \implies \boxed{z-\text{odd}}$ $\square$

Since $y-$ even we get that $y=2 \cdot y'$ so our equation transforms into the following:

$$2020^x+4^{y'}=2024^z$$Claim: $x=y'$
Proof: FTSOC assume $x \neq y'$

So $x \neq y' \iff 2x \neq 2y' \iff x \cdot 2 \neq y' \cdot 2 \iff x \cdot \nu_2(2020) \neq y'\cdot \nu_2(4) \iff \nu_2(2020^x) \neq \nu_2(4^{y})$

So we got that: $x \neq y' \iff \nu_2(2020^x) \neq \nu_2(4^{y})$

Hence we get that: $\nu_2(2020^x+4^{y'})= \min\{\nu_2(2020^x) , \nu_2(4^{y'}) \}= \min\{2x,2y' \}=2 \cdot \min\{x,y' \} \implies  \nu_2(2020^x+4^{y'} \}=2 \cdot \min\{x,y' \} $ $...(1)$

Also on the other hand we have that: $\nu_2(2024^z)=z \cdot \nu_2(2024)= z \cdot 3 =3 \cdot z \implies \nu_2(2024^z)=3 \cdot z$ $...(2)$

Hence we get that $3 \cdot z \stackrel{(2)}{=} \nu_2(2024^z)= \nu_2(2020^x+4^{y'} \} \stackrel{(1)}{=} 2 \cdot \min\{x,y' \} \implies 3 \cdot z=2 \cdot \min\{x,y' \}$

So $2 \mid 2 \cdot \min\{x,y' \}=3 \cdot z \implies 2 \mid 3 \cdot z \implies 2 \mid z \iff z \equiv 0 \pmod 2$ which is a contradiction because we found that $z-\text{odd}$

So our assumption is wrong hence $x=y'$ $\square$ $\implies$
$$2020^x+4^x=2024^x$$Claim: $\nu_{11}(x)=0$
Proof: FTSOC assume $\nu_{11}(x) \geq 1$

So by taking $\nu_{11}$ on both sides and using Lifting the Exponent Lemma (LTE) we get:

$1+\nu_{11}(x)=\nu_{11}(2024)+\nu_{11}(x)=\nu_{11}(2020+4)+\nu_{11}(x) \stackrel{LTE}{=}\nu_{11}(2020^x+4^x)=\nu_{11}(2024^z)=z \cdot \nu_{11}(2024)=z \implies$

$ 1+\nu_{11}(x)=z \iff z=1+\nu_{11}(x)$ Since $z- \text{odd}$ we get that $\nu_{11}(x)-\text{even}.$ Let $\nu_{11}(x)=2k  \implies z=2k+1$ also $x=11^{2k} \cdot t \implies x=121^k \cdot t$

So our equation transforms into the following:

$2020^{121^k \cdot t} + 4^{121^k \cdot t} = 2024^{2k+1}$ Now by taking $\nu_2$ we get:

$6k+3= (2k+1) \cdot 3  = (2k+1) \cdot \nu_2(2024)=\nu_2(2024^{2k+1})=\nu_2( 2020^{121^k \cdot t} + 4^{121^k \cdot t})$

$\geq \min\{\nu_2(2020^{121^k \cdot t}) , \nu_2( 4^{121^k \cdot t} ) \} =\min\{121^k \cdot t \cdot \nu_2(2020) , 121^k \cdot t \cdot \nu_2(4) \} = \min\{(121^k \cdot t \cdot 2), (121^k \cdot t \cdot 2) \}=121^k \cdot t \cdot 2$

$ \implies 6k+3 \geq 121^k \cdot t \cdot 2$ but this isn't true for $k \geq 1$

So our assumption is wrong hence $\nu{11}_(x)=0$ so $z=1+\nu{11}_(x)=1 \implies \boxed{z=1}$

So $2020^x+4^x=2024$ clearly $\boxed{x=1}$ so $y=2 \cdot y' =2 \cdot x=2 \implies \boxed{y=2}$

Hence $(x,y,z)=(1,2,1)$ is the only solution $\blacksquare$
This post has been edited 3 times. Last edited by ItsBesi, Feb 15, 2025, 2:41 PM
Reason: typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EVKV
57 posts
#15
Y by
Claim: $y=2x$.
Proof: Analyzing $mod$ $5$ $y$ is even
let $y=2g$
now $mod$ $3$ gives $z$ is odd
$2020^{x} + 2^{2g} = 2024^{z}$ is same as $4^{x}505^{x} + 4^{g} = 2024^{z}$
Case 1: x>g
$ 2^{2g}(4^{x-g}505^{x} +1) = 2^{3z}253^{z}$
Implying $2g = 3z$ nonsense
Case 1: x<g
$ 2^{2x}(505^{x} +4^{g-x}) = 2^{3z}253^{z}$
Implying $2x = 3z$ nonsense

thus x=g

Now taking $ mod$ $ 5$ again we get $x$ is odd

$ 2^{2x}(505^{x} +1) = 2^{3z}253^{z}$
$v_2(505^{x} +1) = 1$
So, $2x+1 = 3z$
So, $x=3k+1$ (for a non-negetive integer k)
So,$z=2k+1$
Clearly (U can also induct) $2020^{3k+1} > 2024^{2k+1}$ for $k \neq 0$
thus $2020^{3k+1} +4^{3k+1} = 2020^{x} + 2^{y} > 2024^{z}$ for $k \neq 0$

Thus only solution is $(x,y,z)=(1,2,1)$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ray66
31 posts
#16
Y by
Taking mod 3 gives $1+(-1)^y \equiv (-1)^z \pmod 3$, so $y$ is even and $z$ is odd. Now consider $\nu_2$ of both sides. The RHS is $\nu_2(2024^z) = 3z$, so it's odd. The LHS is $\nu_2(2020^x+2^y)$, and it's odd if and only if $y=2x$. Now write the LHS as $4^x(505^x+1)$, and taking mod 4 on the inside sum gives $505^x+1\equiv 2 \pmod 4$. Now we have the relationship $z=\frac{2x+1}{3}$. We can easily check that $\boxed{(1,2,1)}$ is a solution, and we see that for $x>1$, the LHS is strictly greater than the RHS, so there are no solutions $x\ge 2$.
Z K Y
N Quick Reply
G
H
=
a