Join our free webinar April 22 to learn about competitive programming!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
AGI-Origin Solves Full IMO 2020–2024 Benchmark Without Solver (30/30) beat Alpha
AGI-Origin   6
N 6 minutes ago by GeoMorocco
Hello IMO community,

I’m sharing here a full 30-problem solution set to all IMO problems from 2020 to 2024.

Standard AI: Prompt --> Symbolic Solver (SymPy, Geometry API, etc.)

Unlike AlphaGeometry or symbolic math tools that solve through direct symbolic computation, AGI-Origin operates via recursive symbolic cognition.

AGI-Origin:
Prompt --> Internal symbolic mapping --> Recursive contradiction/repair --> Structural reasoning --> Human-style proof

It builds human-readable logic paths by recursively tracing contradictions, repairing structure, and collapsing ambiguity — not by invoking any external symbolic solver.

These results were produced by a recursive symbolic cognition framework called AGI-Origin, designed to simulate semi-AGI through contradiction collapse, symbolic feedback, and recursion-based error repair.

These were solved without using any symbolic computation engine or solver.
Instead, the solutions were derived using a recursive symbolic framework called AGI-Origin, based on:
- Contradiction collapse
- Self-correcting recursion
- Symbolic anchoring and logical repair

Full PDF: [Upload to Dropbox/Google Drive/Notion or arXiv link when ready]

This effort surpasses AlphaGeometry’s previous 25/30 mark by covering:
- Algebra
- Combinatorics
- Geometry
- Functional Equations

Each solution follows a rigorous logical path and is written in fully human-readable format — no machine code or symbolic solvers were used.

I would greatly appreciate any feedback on the solution structure, logic clarity, or symbolic methodology.

Thank you!

— AGI-Origin Team
AGI-Origin.com
6 replies
AGI-Origin
4 hours ago
GeoMorocco
6 minutes ago
Combo problem
soryn   1
N 10 minutes ago by soryn
The school A has m1 boys and m2 girls, and ,the school B has n1 boys and n2 girls. Each school is represented by one team formed by p students,boys and girls. If f(k) is the number of cases for which,the twice schools has,togheter k girls, fund f(k) and the valute of k, for which f(k) is maximum.
1 reply
soryn
5 hours ago
soryn
10 minutes ago
FE solution too simple?
Yiyj1   5
N 10 minutes ago by Primeniyazidayi
Source: 101 Algebra Problems from the AMSP
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?
5 replies
Yiyj1
Apr 9, 2025
Primeniyazidayi
10 minutes ago
Two very hard parallel
jayme   5
N 29 minutes ago by jayme
Source: own inspired by EGMO
Dear Mathlinkers,

1. ABC a triangle
2. D, E two point on the segment BC so that BD = DE= EC
3. M, N the midpoint of ED, AE
4. H the orthocenter of the acutangle triangle ADE
5. 1, 2 the circumcircle of the triangle DHM, EHN
6. P, Q the second point of intersection of 1 and BM, 2 and CN
7. U, V the second points of intersection of 2 and MN, PQ.

Prove : UV is parallel to PM.

Sincerely
Jean-Louis
5 replies
jayme
Yesterday at 12:46 PM
jayme
29 minutes ago
x^{2s}+x^{2s-1}+...+x+1 irreducible over $F_2$?
khanh20   1
N Yesterday at 6:20 PM by khanh20
With $s\in \mathbb{Z}^+; s\ge 2$, whether or not the polynomial $P(x)=x^{2s}+x^{2s-1}+...+x+1$ irreducible over $F_2$?
1 reply
khanh20
Yesterday at 6:18 PM
khanh20
Yesterday at 6:20 PM
Advice on Statistical Proof
ElectrickyRaikou   0
Yesterday at 6:12 PM
Suppose we are given i.i.d.\ observations $X_i$ from a distribution with probability density function (PDF) $f(x_i \mid \theta)$ for $i = 1, \ldots, n$, where the parameter $\theta$ has a prior distribution with PDF $\pi(\theta)$. Consider the following two approaches to Bayesian updating:

(1) Let $X = (X_1, \ldots, X_n)$ be the complete data vector. Denote the posterior PDF as $\pi(\theta \mid x)$, where $x = (x_1, \ldots, x_n)$, obtained by applying Bayes' rule to the full dataset at once.

(2) Start with prior $\pi_0(\theta) = \pi(\theta)$. For each $i = 1, \ldots, n$, let $\pi_{i-1}(\theta)$ be the current prior and update it using observation $x_i$ to obtain the new posterior:

$$\pi_i(\theta) = \frac{f(x_i \mid \theta) \pi_{i-1}(\theta)}{\int f(x_i \mid \theta) \pi_{i-1}(\theta) \, d\theta}.$$
Are the final posteriors $\pi(\theta \mid x)$ from part (a) and $\pi_n(\theta)$ from part (b) the same? Provide a proof or a counterexample.


Here is the proof I've written:

Proof

Do you guys think this is rigorous enough? What would you change?
0 replies
ElectrickyRaikou
Yesterday at 6:12 PM
0 replies
interesting integral
Martin.s   0
Yesterday at 3:12 PM
$$\int_0^\infty \frac{\sinh(t)}{t \cosh^3(t)} dt$$
0 replies
Martin.s
Yesterday at 3:12 PM
0 replies
How to solve this problem
xiangovo   1
N Yesterday at 11:09 AM by loup blanc
Source: website
How many nonzero points are there on x^3y + y^3z + z^3x = 0 over the finite field \mathbb{F}_{5^{18}} up to scaling?
1 reply
xiangovo
Mar 19, 2025
loup blanc
Yesterday at 11:09 AM
Finite solution for x
Rohit-2006   1
N Yesterday at 10:41 AM by Filipjack
$P(t)$ be a non constant polynomial with real coefficients. Prove that the system of simultaneous equations —
$$\int_{0}^{x} P(t)sin t dt =0$$$$\int_{0}^{x}P(t) cos t dt=0$$has finitely many solutions $x$.
1 reply
Rohit-2006
Yesterday at 4:19 AM
Filipjack
Yesterday at 10:41 AM
We know that $\frac{d}{dx}\bigg(\frac{dy}{dx}\bigg)=\frac{d^2 y}{dx^2}.$ Why we
Vulch   1
N Yesterday at 10:28 AM by Aiden-1089
We know that $\frac{d}{dx}\bigg(\frac{dy}{dx}\bigg)=\frac{d^2 y}{dx^2}.$ Why we can't write $\frac{d^2 y}{dx^2}$ as $\frac{d^2 y}{d^2 x^2}?$
1 reply
Vulch
Yesterday at 9:15 AM
Aiden-1089
Yesterday at 10:28 AM
complex analysis
functiono   1
N Yesterday at 9:57 AM by Mathzeus1024
Source: exam
find the real number $a$ such that

$\oint_{|z-i|=1} \frac{dz}{z^2-z+a} =\pi$
1 reply
functiono
Jan 15, 2024
Mathzeus1024
Yesterday at 9:57 AM
Converging product
mathkiddus   10
N Yesterday at 4:30 AM by HacheB2031
Source: mathkiddus
Evaluate the infinite product, $$\prod_{n=1}^{\infty} \frac{7^n - n}{7^n + n}.$$
10 replies
mathkiddus
Apr 18, 2025
HacheB2031
Yesterday at 4:30 AM
Find the formula
JetFire008   4
N Yesterday at 12:36 AM by HacheB2031
Find a formula in compact form for the general term of the sequence defined recursively by $x_1=1, x_n=x_{n-1}+n-1$ if $n$ is even.
4 replies
JetFire008
Sunday at 12:23 PM
HacheB2031
Yesterday at 12:36 AM
$f\circ g +g\circ f=0\implies n$ even
al3abijo   4
N Sunday at 10:37 PM by alexheinis
Let $n$ a positive integer . suppose that there exist two automorphisms $f,g$ of $\mathbb{R}^n$ such that $f\circ g +g\circ f=0$ .
Prove that $n$ is even.
4 replies
al3abijo
Sunday at 9:05 PM
alexheinis
Sunday at 10:37 PM
Finding pairs of complex numbers with a certain property
Ciobi_   1
N Apr 3, 2025 by NTstrucker
Source: Romania NMO 2025 10.4
Find all pairs of complex numbers $(z,w) \in \mathbb{C}^2$ such that the relation \[|z^{2n}+z^nw^n+w^{2n} | = 2^{2n}+2^n+1 \]holds for all positive integers $n$.
1 reply
Ciobi_
Apr 2, 2025
NTstrucker
Apr 3, 2025
Finding pairs of complex numbers with a certain property
G H J
G H BBookmark kLocked kLocked NReply
Source: Romania NMO 2025 10.4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ciobi_
25 posts
#1
Y by
Find all pairs of complex numbers $(z,w) \in \mathbb{C}^2$ such that the relation \[|z^{2n}+z^nw^n+w^{2n} | = 2^{2n}+2^n+1 \]holds for all positive integers $n$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NTstrucker
162 posts
#2
Y by
It's easy to see $z,w \neq 0$. Wlog assume that $|z| \ge |w|>0$ and let $t=w/z$, then $|z|^{2n} \cdot |1+t^n+t^{2n}|=2^{2n}+2^n+1$. We have $|1+t^n+t^{2n}| \le 3$. If $|t|<1$ then $|1+t^n+t^{2n}| \ge 1-|t|^n-|t|^{2n}>1/2$ for all large $n$; if $|t|=1$, we can also choose large $n$ such that $\arg(t^n) \in (-\pi/4,\pi/4)$, so $|1+t^n+t^{2n}| \ge 1$. Hence for both cases, by choosing the appropriate large $n$ we get that $|z|=2$.

Now the equation becomes $|1+t^n+t^{2n}|=1+2^{-n}+2^{-2n}$. Clearly we have $|1+t^n+t^{2n}| \le 1+|t|^n+|t|^{2n}$ which implies $|t| \ge 1/2$. If $|t|=1$, for any $\theta>0$ we can choose large $n$ such that $\arg(t^n) \in (-\theta,\theta)$, making $|1+t^n+t^{2n}|$ sufficiently close to 3, which is a contradiction. Now if $|t| \in (1/2,1)$, then by choosing large $n$ such that $\arg(t^n) \in (-\theta,\theta)$, we can make $|1+t^n+t^{2n}| \ge |1+t^n|-|t|^{2n} \ge 1+\tfrac{1}{2}\cos\theta \cdot |t|^{-n}>1+2^{-n}+2^{-2n}$, a contradiction. Hence $|t|=1/2$, and thus $1,t^n,t^{2n}$ must be of the same direction for the triangle inequality to attain equality, deducing $t=1/2$. Therefore the solution is all $(z,w)$ such that $|w|=1$ and $z=2w$ or $|z|=1$ and $w=2z$.
Z K Y
N Quick Reply
G
H
=
a