Counting Numbers

by steven_zhang123, Mar 30, 2025, 12:12 AM

Let the decimal representations of numbers $A$ and $B$ be given as: $A = 0.a_1a_2\cdots a_k > 0$, $B = 0.b_1b_2\cdots b_k > 0$ (where $a_k, b_k$ can be 0), and let $S$ be the count of numbers $0.c_1c_2\cdots c_k$ such that $0.c_1c_2\cdots c_k < A$ and $0.c_kc_{k-1}\cdots c_1 < B$ ($c_k, c_1$ can also be 0). (Here, $0.c_1c_2\cdots c_r (c_r \neq 0)$ is considered the same as $0.c_1c_2\cdots c_r0\cdots0$).

Prove: $\left| S - 10^k AB \right| \leq 9k.$

Perfect Numbers

by steven_zhang123, Mar 30, 2025, 12:09 AM

If the sum of all positive divisors (including itself) of a positive integer $n$ is $2n$, then $n$ is called a perfect number. For example, the sum of the positive divisors of 6 is $1 + 2 + 3 + 6 = 2 \times 6$, hence 6 is a perfect number.
Prove: There does not exist a perfect number of the form $p^a q^b r^c$, where $a, b, c$ are positive integers, and $p, q, r$ are odd primes.

Roots of unity

by steven_zhang123, Mar 30, 2025, 12:08 AM

Let $k, n$ be positive integers, and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ all be $k$-th roots of unity, satisfying:
\[
\alpha_1^j + \alpha_2^j + \cdots + \alpha_n^j = 0 \quad \text{for any } j (0 < j < k).
\]Prove that among $\alpha_1, \alpha_2, \ldots, \alpha_n$, each $k$-th root of unity appears the same number of times.

Graph Theory Test in China TST (space stations again)

by steven_zhang123, Mar 30, 2025, 12:05 AM

MO Space City plans to construct $n$ space stations, with a unidirectional pipeline connecting every pair of stations. A station directly reachable from station P without passing through any other station is called a directly reachable station of P. The number of stations jointly directly reachable by the station pair $\{P, Q\}$ is to be examined. The plan requires that all station pairs have the same number of jointly directly reachable stations.

(1) Calculate the number of unidirectional cyclic triangles in the space city constructed according to this requirement. (If there are unidirectional pipelines among three space stations A, B, C forming $A \rightarrow B \rightarrow C \rightarrow A$, then triangle ABC is called a unidirectional cyclic triangle.)

(2) Can a space city with $n$ stations meeting the above planning requirements be constructed for infinitely many integers $n \geq 3$?

Graph again

by steven_zhang123, Mar 29, 2025, 11:53 PM

Let \(L_3 = \{3\}\), \(L_n = \{3, 4, \ldots, h\}\) (where \(h > 3\)). For any given integer \(n \geq 3\), consider a graph \(G\) with \(n\) vertices that contains a Hamiltonian cycle \(C\) and has more than \(\frac{n^2}{4}\) edges. For which lengths \(l \in L_n\) must the graph \(G\) necessarily contain a cycle of length \(l\)?

Why are there so many Graphs in China TST 2001?

by steven_zhang123, Mar 29, 2025, 11:44 PM

Let $k$ be a given integer, $3 < k \leq n$. Consider a graph $G$ with $n$ vertices satisfying the condition: for any two non-adjacent vertices $x$ and $y$ in graph $G$, the sum of their degrees must satisfy $d(x) + d(y) \geq k$. Please answer the following questions and prove your conclusions.

(1) Suppose the length of the longest path in graph $G$ is $l$ satisfying the inequality $3 \leq l < k$, does graph $G$ necessarily contain a cycle of length $l+1$? (The length of a path or cycle refers to the number of edges that make up the path or cycle.)

(2) For the case where $3 < k \leq n-1$ and graph $G$ is connected, can we determine that the length of the longest path in graph $G$, $l \geq k$?

(3) For the case where $3 < k = n-1$, is it necessary for graph $G$ to have a path of length $n-1$ (i.e., a Hamiltonian path)?

The Quest for Remainder

by steven_zhang123, Mar 29, 2025, 11:42 PM

Given sets $A = \{1, 4, 5, 6, 7, 9, 11, 16, 17\}$, $B = \{2, 3, 8, 10, 12, 13, 14, 15, 18\}$, if a positive integer leaves a remainder (the smallest non-negative remainder) that belongs to $A$ when divided by 19, then that positive integer is called an $\alpha$ number. If a positive integer leaves a remainder that belongs to $B$ when divided by 19, then that positive integer is called a $\beta$ number.
(1) For what positive integer $n$, among all its positive divisors, are the numbers of $\alpha$ divisors and $\beta$ divisors equal?
(2) For which positive integers $k$, are the numbers of $\alpha$ divisors less than the numbers of $\beta$ divisors? For which positive integers $l$, are the numbers of $\alpha$ divisors greater than the numbers of $\beta$ divisors?

2025 TST 22

by EthanWYX2009, Mar 29, 2025, 2:50 PM

Let \( A \) be a set of 2025 positive real numbers. For a subset \( T \subseteq A \), define \( M_T \) as the median of \( T \) when all elements of \( T \) are arranged in increasing order, with the convention that \( M_\emptyset = 0 \). Define
\[
P(A) = \sum_{\substack{T \subseteq A \\ |T| \text{ odd}}} M_T, \quad Q(A) = \sum_{\substack{T \subseteq A \\ |T| \text{ even}}} M_T.
\]Find the smallest real number \( C \) such that for any set \( A \) of 2025 positive real numbers, the following inequality holds:
\[
P(A) - Q(A) \leq C \cdot \max(A),
\]where \(\max(A)\) denotes the largest element in \( A \).

A and B play a game

by EthanWYX2009, Mar 29, 2025, 2:49 PM

Let \( n \geq 2 \) be an integer. Two players, Alice and Bob, play the following game on the complete graph \( K_n \): They take turns to perform operations, where each operation consists of coloring one or two edges that have not been colored yet. The game terminates if at any point there exists a triangle whose three edges are all colored.

Prove that there exists a positive number \(\varepsilon\), Alice has a strategy such that, no matter how Bob colors the edges, the game terminates with the number of colored edges not exceeding
\[
\left( \frac{1}{4} - \varepsilon \right) n^2 + n.
\]
This post has been edited 1 time. Last edited by EthanWYX2009, Yesterday at 2:56 PM

How many cases did you check?

by avisioner, Jul 17, 2024, 12:01 PM

Determine all ordered pairs $(a,p)$ of positive integers, with $p$ prime, such that $p^a+a^4$ is a perfect square.

Proposed by Tahjib Hossain Khan, Bangladesh
This post has been edited 1 time. Last edited by avisioner, Jul 20, 2024, 4:57 PM
Reason: Proposer name added

Fun with Math!

avatar

aoum
Archives
- March 2025
Shouts
Submit
  • I am now able to make clickable images in my posts! :)

    by aoum, 2 hours ago

  • Am I doing enough? Are you all expecting more from me?

    by aoum, Yesterday at 12:31 AM

  • That's all right.

    by aoum, Friday at 10:46 PM

  • sorry i couldn't contribute, was working on my own blog and was sick, i'll try to contribute more

    by HacheB2031, Friday at 2:41 AM

  • Nice blog!
    I found it through blogroll.

    by yaxuan, Mar 26, 2025, 5:26 AM

  • How are you guys finding my blog?

    by aoum, Mar 24, 2025, 4:50 PM

  • insanely high quality!

    by clarkculus, Mar 24, 2025, 3:20 AM

  • Thanks! Happy to hear that!

    by aoum, Mar 23, 2025, 7:26 PM

  • They look really nice!

    by kamuii, Mar 23, 2025, 1:50 AM

  • I've embedded images and videos in my posts now. How do they look? (Please refrain from using my code. :noo:)

    by aoum, Mar 20, 2025, 8:58 PM

  • This is a nice blog! :)

    by charking, Mar 18, 2025, 7:48 PM

  • Are you guys actually reading my posts? Am I doing too much?

    by aoum, Mar 17, 2025, 11:35 PM

  • Thanks! Glad to hear that!

    by aoum, Mar 17, 2025, 3:07 PM

  • This is a really nice blog! One of the best I've seen on AOPS so far

    by kamuii, Mar 17, 2025, 12:13 AM

  • What does everyone think of my blog?

    by aoum, Mar 16, 2025, 10:28 PM

  • Yes, you may.

    by aoum, Mar 16, 2025, 9:00 PM

  • Can I contribute???

    by rayliu985, Mar 16, 2025, 8:00 PM

  • I'm sorry, I cannot make a post about the "performance" you mentioned, ohiorizzler1434.

    by aoum, Mar 15, 2025, 4:00 PM

  • are you a chat gpt

    by amburger, Mar 15, 2025, 1:48 AM

  • Bruh! That's crazy. can you make a post about KSI's performance of 'thick of it' at the sidemen charity football match? Personally, I thought it was amazing! KSI's energy and singing ability really made my day!

    by ohiorizzler1434, Mar 15, 2025, 1:03 AM

  • I already have a post on the Collatz Conjecture, but I'll make another, better one soon.

    by aoum, Mar 14, 2025, 10:53 PM

  • Your blog looks skibidi ohio! Please make a post about the collatz conjecture next, with a full solution!

    by ohiorizzler1434, Mar 14, 2025, 10:26 PM

  • Thanks for subscribing!

    by aoum, Mar 14, 2025, 8:24 PM

  • I get emails every post you make. Also, third post!?

    by HacheB2031, Mar 13, 2025, 11:43 PM

  • I can hardly believe you are watching my blog so carefully.

    by aoum, Mar 13, 2025, 11:42 PM

  • woah what :O two posts in 4 minutes

    by HacheB2031, Mar 13, 2025, 11:35 PM

  • I'll try. With these advanced areas, it's more likely that I'll make a mistake somewhere, so please help me out. (I will make these as accurate as I can.)

    by aoum, Mar 10, 2025, 11:51 PM

  • Maybe conic sections?

    by HacheB2031, Mar 10, 2025, 2:53 PM

  • Does anyone have some ideas for me to write about?

    by aoum, Mar 9, 2025, 10:28 PM

  • That's nice to know. I'm also learning new, interesting things on here myself, too.

    by aoum, Mar 7, 2025, 11:35 PM

  • Reading the fun facts and all from this blog's material makes me feel so at ease when using formulas. like, I finally understand the backstory of it and all that even teachers don't teach :roll:

    by expiredcraker, Mar 7, 2025, 4:50 AM

  • Thanks! There are many interesting things about math out there, and I hope to share them with you all. I'll be posting more of these!

    by aoum, Mar 7, 2025, 12:56 AM

  • Wow. This is a very interesting blog! I could really use this advice!

    by rayliu985, Mar 7, 2025, 12:43 AM

  • Thanks! Nice to hear that!

    by aoum, Mar 6, 2025, 10:56 PM

  • blog is great :) :coolspeak:

    by HacheB2031, Mar 6, 2025, 5:45 AM

  • Yes, I'll be doing problems of the day every day.

    by aoum, Mar 5, 2025, 1:15 AM

  • I think it would also be cool if you did a problem of the day every day, as I see from today's problem.

    by jocaleby1, Mar 5, 2025, 1:13 AM

  • Do you guys like my "lectures" or would you like something else?

    by aoum, Mar 4, 2025, 10:37 PM

  • Yeah, keep on making these "lectures" :)

    by jocaleby1, Mar 4, 2025, 2:41 AM

  • Thanks! Glad to hear that!

    by aoum, Mar 3, 2025, 10:28 PM

  • ME ME ME OMG I need a math mentor like this your explanation is so easy to understand! also 3rd shout! :D

    by expiredcraker, Mar 3, 2025, 3:32 AM

  • Anyone wants to contribute to my blog? Shout or give me a friend request!

    by aoum, Mar 2, 2025, 3:22 PM

  • Nice blog! Contrib?

    by jocaleby1, Mar 1, 2025, 6:43 PM

43 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
poll
Collatz Conjecture
Millennium Prize Problems
pi
Riemann Hypothesis
Sir Issac Newton
AMC
Chudnovsky Algorithm
Gauss-Legendre Algorithm
Goldbach Conjecture
infinity
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Nilakantha Series
P vs NP Problem
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bernoulli numbers
Bertrand s Box Paradox
binomial theorem
calculus
Cantor s Infinite Sets
cardinality
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cyclic Numbers
Different Sizes of Infinity
Diseases
Drake Equation
epidemiology
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Exponents
Factorials
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
four color theorem
Fractals and Chaos Theory
free books
Golden Ratio
graph theory
gravity
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Hilbert s Hotel
Hodge Conjecture
Inclusion-exclusion
infinite
Irrational numbers
Law of Force and Acceleration
Leibniz Formula
logarithms
Mastering AMC 8
Menger Sponge
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
P-adic Analysis
Parabolas
Paradox
paradoxes
Penrose Tilings
pie
prime numbers
probability
Pythagorean Theorem
Python
Reproduction Rate of Diseases
Sequences
Sets
Sierpinski Triangle
Simon s Factoring Trick
The Birthday Problem
The Book of Formulas
The Law of Action and Reaction
The Law of Inertia
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 65
  • Total visits: 533
  • Total comments: 25
Search Blog
a