Gergonne point Harmonic quadrilateral

by niwobin, May 17, 2025, 8:17 PM

Triangle ABC has incircle touching the sides at D, E, F as shown.
AD, BE, CF concurrent at Gergonne point G.
BG and CG cuts the incircle at X and Y, respectively.
AG cuts the incircle at K.
Prove: K, X, D, Y form a harmonic quadrilateral. (KX/KY = DX/DY)
Attachments:

Functional Equation from IMO

by prtoi, May 17, 2025, 8:07 PM

Question: $f(2a)+2f(b)=f(f(a+b))$
Solve for f:Z-->Z
My solution:
At a=0, $f(0)+2f(b)=f(f(b))$
Take t=f(b) to get $f(0)+2t=f(t)$
Therefore, f(x)=2x+n where n=f(0)
Could someone please clarify if this is right or wrong?

Combi that will make you question every choice in your life so far

by blug, May 17, 2025, 5:46 PM

$A$ and $B$ are standing in front of the room in which there is $C$. They know that there is a chessboard in the room and that on every square there is a coin. Every coin is black on one side and white on the other side and is flipped randomly. $A$ enters the room and then $C$ points at exactly one square on the chessboard. After that, $A$ must flip exactly one coin of his choice on the chessboard to the other side and leave. Finally, $B$ enters the room ($A$ and $B$ haven't met again after $A$ entered the room) and he has to guess which square did $C$ point at.
What strategy do $A$ and $B$ have that will make this happen every time?

can you solve this..?

by Jackson0423, May 8, 2025, 4:17 PM

Find the number of integer pairs \( (x, y) \) satisfying the equation
\[ 4x^2 - 3y^2 = 1 \]such that \( |x| \leq 2025 \).

Concurrence of lines defined by intersections of circles

by Lukaluce, Apr 14, 2025, 10:57 AM

Let $\triangle ABC$ be an acute-angled triangle and $A_1, B_1$, and $C_1$ be the feet of the altitudes from $A, B$, and $C$, respectively. On the rays $AA_1, BB_1$, and $CC_1$, we have points $A_2, B_2$, and $C_2$ respectively, lying outside of $\triangle ABC$, such that
\[\frac{A_1A_2}{AA_1} = \frac{B_1B_2}{BB_1} = \frac{C_1C_2}{CC_1}.\]If the intersections of $B_1C_2$ and $B_2C_1$, $C_1A_2$ and $C_2A_1$, and $A_1B_2$ and $A_2B_1$ are $A', B'$, and $C'$ respectively, prove that $AA', BB'$, and $CC'$ have a common point.

Factorial Divisibility

by Aryan-23, Jul 9, 2023, 5:02 AM

Find all positive integers $n>2$ such that
$$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$
This post has been edited 1 time. Last edited by Aryan-23, Aug 7, 2023, 7:29 AM

Functional equation

by Pmshw, May 8, 2022, 3:57 PM

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for any real value of $x,y$ we have:
$$f(xf(y)+f(x)+y)=xy+f(x)+f(y)$$
This post has been edited 1 time. Last edited by Pmshw, May 8, 2022, 3:58 PM

Hard Geometry

by Jalil_Huseynov, Dec 26, 2021, 7:10 PM

Let triangle $ABC$ be a triangle with incenter $I$ and circumcircle $\Omega$ with circumcenter $O$. The incircle touches $CA, AB$ at $E, F$ respectively. $R$ is another intersection point of external bisector of $\angle BAC$ with $\Omega$, and $T$ is $\text{A-mixtillinear}$ incircle touch point to $\Omega$. Let $W, X, Z$ be points lie on $\Omega$. $RX$ intersect $AI$ at $Y$ . Assume that $R \ne X$. Suppose that $E, F, X, Y$ and $W, Z, E, F$ are concyclic, and $AZ, EF, RX$ are concurrent.
Prove that
$\bullet$ $AZ, RW, OI$ are concurrent.
$\bullet$ $\text{A-symmedian}$, tangent line to $\Omega$ at $T$ and $WZ$ are concurrent.

Proporsed by wassupevery1 and k12byda5h
This post has been edited 1 time. Last edited by Jalil_Huseynov, Dec 28, 2021, 12:36 PM

Algebra form IMO Shortlist

by Abbas11235, Jul 10, 2018, 11:54 AM

Let $q$ be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes the following three lines of real numbers on the blackboard:
  • In the first line, Gugu writes down every number of the form $a-b$, where $a$ and $b$ are two (not necessarily distinct) numbers on his napkin.
  • In the second line, Gugu writes down every number of the form $qab$, where $a$ and $b$ are
    two (not necessarily distinct) numbers from the first line.
  • In the third line, Gugu writes down every number of the form $a^2+b^2-c^2-d^2$, where $a, b, c, d$ are four (not necessarily distinct) numbers from the first line.
Determine all values of $q$ such that, regardless of the numbers on Gugu's napkin, every number in the second line is also a number in the third line.
This post has been edited 13 times. Last edited by levans, Aug 19, 2018, 6:27 PM

Multiple of multinomial coefficient is an integer

by orl, Mar 7, 2009, 8:00 PM

For $ a_i \in \mathbb{Z}^ +$, $ i = 1, \ldots, k$, and $ n = \sum^k_{i = 1} a_i$, let $ d = \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$.
Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i = 1} (a_i!)}$ is an integer.

Dan Schwarz, Romania

Fun with math, science, and programming!

avatar

aoum
Archives
+ March 2025
Shouts
Submit
  • Take a look at The British Flag Theorem post. I've included a working Python program.

    by aoum, Today at 1:05 AM

  • Check out the Pascal's Law post. I included a cartoon from the xkcd serial webcomic.

    by aoum, May 15, 2025, 1:04 AM

  • If you leave a comment on one of my posts—especially older ones—I might not see it right away.

    by aoum, May 2, 2025, 11:55 PM

  • 100 posts!

    by aoum, Apr 21, 2025, 9:11 PM

  • Very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very cool (The maximum of the factorial machine is 7228!

    by Coin1, Apr 21, 2025, 4:44 AM

  • cool blog and good content but it looks eerily similar to chatgpt

    by SirAppel, Apr 17, 2025, 1:28 AM

  • 1,000 views!

    by aoum, Apr 17, 2025, 12:25 AM

  • Excellent blog. Contribute?

    by zhenghua, Apr 10, 2025, 1:27 AM

  • Are you asking to contribute or to be notified whenever a post is published?

    by aoum, Apr 10, 2025, 12:20 AM

  • nice blog! love the dedication c:
    can i have contrib to be notified whenever you post?

    by akliu, Apr 10, 2025, 12:08 AM

  • WOAH I JUST CAME HERE, CSS IS CRAZY

    by HacheB2031, Apr 8, 2025, 5:05 AM

  • Thanks! I'm happy to hear that! How is the new CSS? If you don't like it, I can go back.

    by aoum, Apr 8, 2025, 12:42 AM

  • This is such a cool blog! Just a suggestion, but I feel like it would look a bit better if the entries were wider. They're really skinny right now, which makes the posts seem a lot longer.

    by Catcumber, Apr 4, 2025, 11:16 PM

  • The first few posts for April are out!

    by aoum, Apr 1, 2025, 11:51 PM

  • Sure! I understand that it would be quite a bit to take in.

    by aoum, Apr 1, 2025, 11:08 PM

61 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
combinatorics
Millennium Prize Problems
poll
Riemann Hypothesis
calculus
Collatz Conjecture
Factorials
graph theory
infinity
pi
Sir Issac Newton
AMC
Bernoulli numbers
Chudnovsky Algorithm
Exponents
Gauss-Legendre Algorithm
Goldbach Conjecture
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Matroids
Nilakantha Series
number theory
P vs NP Problem
P-adic Analysis
paradoxes
Polynomials
primes
probability
Ramsey Theory
1d
2D
3d
4d
algebra
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bell Curve
Bertrand s Box Paradox
binomial theorem
Birthday Attack
Birthday Problem
British Flag Theorem
buffon s needle
Cantor s Infinite Sets
cardinality
catalan numbers
Center of a Triangle
Chicken McNugget Theorem
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cryptography
Cyclic Numbers
Cyclic Sieving Phenomenon
Different Sizes of Infinity
Diophantine Equations
Diophantinve Approximation
Dirichlets Approximation
Diseases
Double Factorials
Drake Equation
epidemiology
euclidean geometry
Euler Characteristic
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
First Dimenstion
four color theorem
Fourth dimension
Fractals and Chaos Theory
free books
Gamma function
Golden Ratio
Graham s Number
Graph Minor Theorem
gravity
Greedoids
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Higher Dimensions
Hilbert s Hotel
Hilberts Hotel
Hodge Conjecture
ideal gas law
Inclusion-exclusion
infinite
Irrational numbers
Kruskals Tree Theorem
Laplace s Equation
Law of Force and Acceleration
legendre s theorem
Leibniz Formula
logarithms
logic
Lucas-Lehmer Numbers
Mastering AMC 8
Matrices
Medoids
Menger Sponge
Mersenne numbers
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
normal distribution
Parabolas
Paradox
Pascal s Law
pascal s triangle
Penrose Tilings
physical chemistry
pie
pigeonhole principle
platonic solids
Price s Equation
prime numbers
Ptolemys Theorem
Pythagorean Theorem
Python
Ramsey s Theorem
recursion
Reproduction Rate of Diseases
Riemann Zeta Function
Second Dimension
Sequences
Sequences of Binomial Type
Sets
Sierpinski Triangle
Sierpiski Carpet
Sierpiski Triangle
Simon s Factoring Trick
Squaring the Circle
statistics
Sums of Like Powers
Taylor series
The Birthday Problem
The Book of Formulas
The HalesJewett Theorem
The Law of Action and Reaction
The Law of Inertia
The Lost Boarding Pass Problem
thermodynamics
Third Dimension
time travel
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
Umbral Calculus
Van der Waerdens Theorem
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 121
  • Total visits: 1451
  • Total comments: 40
Search Blog
a