Quadratic + cubic residue => 6th power residue?

by Miquel-point, May 16, 2025, 6:02 PM

Decide whether the following statement is true: if an infinite arithmetic sequence of positive integers includes both a perfect square and a perfect cube, then it also includes a perfect $6$th power.

Proposed by Sándor Róka, Nyíregyháza

Cute property of Pascal hexagon config

by Miquel-point, May 16, 2025, 5:59 PM

In cyclic hexagon $ABCDEF$ let $P$ denote the intersection of diagonals $AD$ and $CF$, and let $Q$ denote the intersection of diagonals $AE$ and $BF$. Prove that if $BC=CP$ and $DP=DE$, then $PQ$ bisects angle $BQE$.

Proposed by Géza Kós, Budapest

II_a - r_a = R - r implies A = 60

by Miquel-point, May 16, 2025, 5:55 PM

The incenter and the inradius of the acute triangle $ABC$ are $I$ and $r$, respectively. The excenter and exradius relative to vertex $A$ is $I_a$ and $r_a$, respectively. Let $R$ denote the circumradius. Prove that if $II_a=r_a+R-r$, then $\angle BAC=60^\circ$.

Proposed by Class 2024C of Fazekas M. Gyak. Ált. Isk. és Gimn., Budapest

Anything real in this system must be integer

by Assassino9931, May 9, 2025, 9:26 AM

Determine the largest integer $c$ for which the following statement holds: there exists at least one triple $(x,y,z)$ of integers such that
\begin{align*} x^2 + 4(y + z) = y^2 + 4(z + x) = z^2 + 4(x + y) = c \end{align*}and all triples $(x,y,z)$ of real numbers, satisfying the equations, are such that $x,y,z$ are integers.

Marek Maruin, Slovakia
This post has been edited 1 time. Last edited by Assassino9931, May 9, 2025, 9:26 AM

Gives typical russian combinatorics vibes

by Sadigly, May 8, 2025, 4:15 PM

You are given a positive integer $n$. $n^2$ amount of people stand on coordinates $(x;y)$ where $x,y\in\{0;1;2;...;n-1\}$. Every person got a water cup and two people are considered to be neighbour if the distance between them is $1$. At the first minute, the person standing on coordinates $(0;0)$ got $1$ litres of water, and the other $n^2-1$ people's water cup is empty. Every minute, two neighbouring people are chosen that does not have the same amount of water in their water cups, and they equalize the amount of water in their water cups.

Prove that, no matter what, the person standing on the coordinates $(x;y)$ will not have more than $\frac1{x+y+1}$ litres of water.
This post has been edited 2 times. Last edited by Sadigly, May 11, 2025, 6:40 AM

Good Permutations in Modulo n

by swynca, Apr 27, 2025, 2:03 PM

An integer $n > 1$ is called $\emph{good}$ if there exists a permutation $a_1, a_2, a_3, \dots, a_n$ of the numbers $1, 2, 3, \dots, n$, such that:
$(i)$ $a_i$ and $a_{i+1}$ have different parities for every $1 \leq i \leq n-1$;
$(ii)$ the sum $a_1 + a_2 + \cdots + a_k$ is a quadratic residue modulo $n$ for every $1 \leq k \leq n$.
Prove that there exist infinitely many good numbers, as well as infinitely many positive integers which are not good.
This post has been edited 2 times. Last edited by swynca, Apr 27, 2025, 4:15 PM

Concurrency from isogonal Mittenpunkt configuration

by MarkBcc168, Apr 28, 2020, 7:07 AM

Let $\triangle ABC$ be a scalene triangle with circumcenter $O$, incenter $I$, and incircle $\omega$. Let $\omega$ touch the sides $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$ at points $D$, $E$, and $F$ respectively. Let $T$ be the projection of $D$ to $\overline{EF}$. The line $AT$ intersects the circumcircle of $\triangle ABC$ again at point $X\ne A$. The circumcircles of $\triangle AEX$ and $\triangle AFX$ intersect $\omega$ again at points $P\ne E$ and $Q\ne F$ respectively. Prove that the lines $EQ$, $FP$, and $OI$ are concurrent.

Proposed by MarkBcc168.
This post has been edited 1 time. Last edited by MarkBcc168, Apr 28, 2020, 7:08 AM

Triangular Numbers in action

by integrated_JRC, Oct 7, 2018, 11:26 AM

Find all natural numbers $n$ such that $1+[\sqrt{2n}]~$ divides $2n$.

( For any real number $x$ , $[x]$ denotes the largest integer not exceeding $x$. )
This post has been edited 3 times. Last edited by integrated_JRC, Oct 8, 2018, 1:16 AM

Number theory problem

by Angelaangie, Jun 19, 2018, 4:51 PM

Prove that 7p+3^p-4 it is not a perfect square where p is prime.

another n x n table problem.

by pohoatza, May 13, 2007, 11:38 AM

Consider a $n$x$n$ table such that the unit squares are colored arbitrary in black and white, such that exactly three of the squares placed in the corners of the table are white, and the other one is black. Prove that there exists a $2$x$2$ square which contains an odd number of unit squares white colored.

Fun with math!

avatar

aoum
Archives
+ March 2025
Shouts
Submit
  • Check out the Pascal's Law post. I included a cartoon from the xkcd serial webcomic.

    by aoum, Yesterday at 1:04 AM

  • If you leave a comment on one of my posts—especially older ones—I might not see it right away.

    by aoum, May 2, 2025, 11:55 PM

  • 100 posts!

    by aoum, Apr 21, 2025, 9:11 PM

  • Very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very cool (The maximum of the factorial machine is 7228!

    by Coin1, Apr 21, 2025, 4:44 AM

  • cool blog and good content but it looks eerily similar to chatgpt

    by SirAppel, Apr 17, 2025, 1:28 AM

  • 1,000 views!

    by aoum, Apr 17, 2025, 12:25 AM

  • Excellent blog. Contribute?

    by zhenghua, Apr 10, 2025, 1:27 AM

  • Are you asking to contribute or to be notified whenever a post is published?

    by aoum, Apr 10, 2025, 12:20 AM

  • nice blog! love the dedication c:
    can i have contrib to be notified whenever you post?

    by akliu, Apr 10, 2025, 12:08 AM

  • WOAH I JUST CAME HERE, CSS IS CRAZY

    by HacheB2031, Apr 8, 2025, 5:05 AM

  • Thanks! I'm happy to hear that! How is the new CSS? If you don't like it, I can go back.

    by aoum, Apr 8, 2025, 12:42 AM

  • This is such a cool blog! Just a suggestion, but I feel like it would look a bit better if the entries were wider. They're really skinny right now, which makes the posts seem a lot longer.

    by Catcumber, Apr 4, 2025, 11:16 PM

  • The first few posts for April are out!

    by aoum, Apr 1, 2025, 11:51 PM

  • Sure! I understand that it would be quite a bit to take in.

    by aoum, Apr 1, 2025, 11:08 PM

  • No, but it is a lot to take in. Also, could you do the Gamma Function next?

    by HacheB2031, Apr 1, 2025, 3:04 AM

60 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
combinatorics
Millennium Prize Problems
poll
Riemann Hypothesis
calculus
Collatz Conjecture
Factorials
graph theory
infinity
pi
Sir Issac Newton
AMC
Bernoulli numbers
Chudnovsky Algorithm
Exponents
Gauss-Legendre Algorithm
Goldbach Conjecture
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Matroids
Nilakantha Series
number theory
P vs NP Problem
P-adic Analysis
paradoxes
Polynomials
primes
probability
Ramsey Theory
1d
2D
3d
4d
algebra
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bell Curve
Bertrand s Box Paradox
binomial theorem
Birthday Attack
Birthday Problem
buffon s needle
Cantor s Infinite Sets
cardinality
catalan numbers
Center of a Triangle
Chicken McNugget Theorem
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cryptography
Cyclic Numbers
Cyclic Sieving Phenomenon
Different Sizes of Infinity
Diophantine Equations
Diophantinve Approximation
Dirichlets Approximation
Diseases
Double Factorials
Drake Equation
epidemiology
euclidean geometry
Euler Characteristic
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
First Dimenstion
four color theorem
Fourth dimension
Fractals and Chaos Theory
free books
Gamma function
Golden Ratio
Graham s Number
Graph Minor Theorem
gravity
Greedoids
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Higher Dimensions
Hilbert s Hotel
Hilberts Hotel
Hodge Conjecture
ideal gas law
Inclusion-exclusion
infinite
Irrational numbers
Kruskals Tree Theorem
Laplace s Equation
Law of Force and Acceleration
legendre s theorem
Leibniz Formula
logarithms
logic
Lucas-Lehmer Numbers
Mastering AMC 8
Matrices
Medoids
Menger Sponge
Mersenne numbers
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
normal distribution
Parabolas
Paradox
Pascal s Law
pascal s triangle
Penrose Tilings
physical chemistry
pie
pigeonhole principle
platonic solids
Price s Equation
prime numbers
Ptolemys Theorem
Pythagorean Theorem
Python
Ramsey s Theorem
recursion
Reproduction Rate of Diseases
Riemann Zeta Function
Second Dimension
Sequences
Sequences of Binomial Type
Sets
Sierpinski Triangle
Sierpiski Carpet
Sierpiski Triangle
Simon s Factoring Trick
Squaring the Circle
statistics
Sums of Like Powers
Taylor series
The Birthday Problem
The Book of Formulas
The HalesJewett Theorem
The Law of Action and Reaction
The Law of Inertia
The Lost Boarding Pass Problem
thermodynamics
Third Dimension
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
Umbral Calculus
Van der Waerdens Theorem
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 119
  • Total visits: 1435
  • Total comments: 40
Search Blog
a