nice problem

by hanzo.ei, Mar 29, 2025, 5:58 PM

Let triangle $ABC$ be inscribed in the circumcircle $(O)$ and circumscribed about the incircle $(I)$, with $AB < AC$. The incircle $(I)$ touches the sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. A line through $I$, perpendicular to $AI$, intersects $BC$, $CA$, and $AB$ at $X$, $Y$, and $Z$, respectively. The line $AI$ meets $(O)$ at $M$ (distinct from $A$). The circumcircle of triangle $AYZ$ intersects $(O)$ at $N$ (distinct from $A$). Let $P$ be the midpoint of the arc $BAC$ of $(O)$. The line $AI$ cuts segments $DF$ and $DE$ at $K$ and $L$, respectively, and the tangents to the circle $(DKL)$ at $K$ and $L$ intersect at $T$. Prove that $AT \perp BC$.

2025 Caucasus MO Seniors P2

by BR1F1SZ, Mar 26, 2025, 12:39 AM

Let $ABC$ be a triangle, and let $B_1$ and $B_2$ be points on segment $AC$ symmetric with respect to the midpoint of $AC$. Let $\gamma_A$ denote the circle passing through $B_1$ and tangent to line $AB$ at $A$. Similarly, let $\gamma_C$ denote the circle passing through $B_1$ and tangent to line $BC$ at $C$. Let the circles $\gamma_A$ and $\gamma_C$ intersect again at point $B'$ ($B' \neq B_1$). Prove that $\angle ABB' = \angle CBB_2$.

Nordic 2025 P3

by anirbanbz, Mar 25, 2025, 12:36 PM

Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O$. Let $E$ and $F$ be points on the line segments $AC$ and $AB$ respectively such that $AEHF$ is a parallelogram. Prove that $\vert OE \vert = \vert OF \vert$.

Hard limits

by Snoop76, Mar 25, 2025, 9:13 AM

$a_n$ and $b_n$ satisfies the following recursion formulas: $a_{0}=1, $ $b_{0}=1$, $ a_{n+1}=a_{n}+b_{n}$$ $ and $ $$ b_{n+1}=(2n+3)b_{n}+a_{n}$. Find $ \lim_{n \to \infty} \frac{a_n}{(2n-1)!!}$ $ $ and $ $ $\lim_{n \to \infty} \frac{b_n}{(2n+1)!!}.$

D1018 : Can you do that ?

by Dattier, Mar 24, 2025, 6:01 AM

We can find $A,B,C$, such that $\gcd(A,B)=\gcd(C,A)=\gcd(A,2)=1$ and $$\forall n \in \mathbb N^*, (C^n \times B \mod A) \mod 2=0 $$.

For example :

$C=20$
$A=47650065401584409637777147310342834508082136874940478469495402430677786194142956609253842997905945723173497630499054266092849839$

$B=238877301561986449355077953728734922992395532218802882582141073061059783672634737309722816649187007910722185635031285098751698$

Can you find $A,B,C$ such that $A>3$ is prime, $C,B \in (\mathbb Z/A\mathbb Z)^*$ with $o(C)=(A-1)/2$ and $$\forall n \in \mathbb N^*, (C^n \times B \mod A) \mod 2=0 $$?

A number theory about divisors which no one fully solved at the contest

by nAalniaOMliO, Jul 24, 2024, 7:40 PM

Let's call a pair of positive integers $(k,n)$ interesting if $n$ is composite and for every divisor $d<n$ of $n$ at least one of $d-k$ and $d+k$ is also a divisor of $n$
Find the number of interesting pairs $(k,n)$ with $k \leq 100$
M. Karpuk
This post has been edited 1 time. Last edited by nAalniaOMliO, Jul 27, 2024, 10:08 AM

f( - f (x) - f (y))= 1 -x - y , in Zxz

by parmenides51, Nov 22, 2020, 1:16 PM

Find all functions $f: Z \to Z$ that satisfy $$f(-f (x) - f (y))= 1 -x - y$$for all $x, y \in Z$
This post has been edited 1 time. Last edited by parmenides51, Nov 22, 2020, 1:21 PM

Find a given number of divisors of ab

by proglote, Oct 24, 2013, 9:51 PM

Arnaldo and Bernaldo play the following game: given a fixed finite set of positive integers $A$ known by both players, Arnaldo picks a number $a \in A$ but doesn't tell it to anyone. Bernaldo thens pick an arbitrary positive integer $b$ (not necessarily in $A$). Then Arnaldo tells the number of divisors of $ab$. Show that Bernaldo can choose $b$ in a way that he can find out the number $a$ chosen by Arnaldo.

CGMO6: Airline companies and cities

by v_Enhance, Aug 13, 2012, 10:47 PM

There are $n$ cities, $2$ airline companies in a country. Between any two cities, there is exactly one $2$-way flight connecting them which is operated by one of the two companies. A female mathematician plans a travel route, so that it starts and ends at the same city, passes through at least two other cities, and each city in the route is visited once. She finds out that wherever she starts and whatever route she chooses, she must take flights of both companies. Find the maximum value of $n$.

IMO Shortlist 2010 - Problem G1

by Amir Hossein, Jul 17, 2011, 2:10 AM

Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$

Proposed by Christopher Bradley, United Kingdom

Fun with Math!

avatar

aoum
Archives
- March 2025
Shouts
Submit
  • Am I doing enough? Are you all expecting more from me?

    by aoum, Today at 12:31 AM

  • That's all right.

    by aoum, Yesterday at 10:46 PM

  • sorry i couldn't contribute, was working on my own blog and was sick, i'll try to contribute more

    by HacheB2031, Yesterday at 2:41 AM

  • Nice blog!
    I found it through blogroll.

    by yaxuan, Mar 26, 2025, 5:26 AM

  • How are you guys finding my blog?

    by aoum, Mar 24, 2025, 4:50 PM

  • insanely high quality!

    by clarkculus, Mar 24, 2025, 3:20 AM

  • Thanks! Happy to hear that!

    by aoum, Mar 23, 2025, 7:26 PM

  • They look really nice!

    by kamuii, Mar 23, 2025, 1:50 AM

  • I've embedded images and videos in my posts now. How do they look? (Please refrain from using my code. :noo:)

    by aoum, Mar 20, 2025, 8:58 PM

  • This is a nice blog! :)

    by charking, Mar 18, 2025, 7:48 PM

  • Are you guys actually reading my posts? Am I doing too much?

    by aoum, Mar 17, 2025, 11:35 PM

  • Thanks! Glad to hear that!

    by aoum, Mar 17, 2025, 3:07 PM

  • This is a really nice blog! One of the best I've seen on AOPS so far

    by kamuii, Mar 17, 2025, 12:13 AM

  • What does everyone think of my blog?

    by aoum, Mar 16, 2025, 10:28 PM

  • Yes, you may.

    by aoum, Mar 16, 2025, 9:00 PM

  • Can I contribute???

    by rayliu985, Mar 16, 2025, 8:00 PM

  • I'm sorry, I cannot make a post about the "performance" you mentioned, ohiorizzler1434.

    by aoum, Mar 15, 2025, 4:00 PM

  • are you a chat gpt

    by amburger, Mar 15, 2025, 1:48 AM

  • Bruh! That's crazy. can you make a post about KSI's performance of 'thick of it' at the sidemen charity football match? Personally, I thought it was amazing! KSI's energy and singing ability really made my day!

    by ohiorizzler1434, Mar 15, 2025, 1:03 AM

  • I already have a post on the Collatz Conjecture, but I'll make another, better one soon.

    by aoum, Mar 14, 2025, 10:53 PM

  • Your blog looks skibidi ohio! Please make a post about the collatz conjecture next, with a full solution!

    by ohiorizzler1434, Mar 14, 2025, 10:26 PM

  • Thanks for subscribing!

    by aoum, Mar 14, 2025, 8:24 PM

  • I get emails every post you make. Also, third post!?

    by HacheB2031, Mar 13, 2025, 11:43 PM

  • I can hardly believe you are watching my blog so carefully.

    by aoum, Mar 13, 2025, 11:42 PM

  • woah what :O two posts in 4 minutes

    by HacheB2031, Mar 13, 2025, 11:35 PM

  • I'll try. With these advanced areas, it's more likely that I'll make a mistake somewhere, so please help me out. (I will make these as accurate as I can.)

    by aoum, Mar 10, 2025, 11:51 PM

  • Maybe conic sections?

    by HacheB2031, Mar 10, 2025, 2:53 PM

  • Does anyone have some ideas for me to write about?

    by aoum, Mar 9, 2025, 10:28 PM

  • That's nice to know. I'm also learning new, interesting things on here myself, too.

    by aoum, Mar 7, 2025, 11:35 PM

  • Reading the fun facts and all from this blog's material makes me feel so at ease when using formulas. like, I finally understand the backstory of it and all that even teachers don't teach :roll:

    by expiredcraker, Mar 7, 2025, 4:50 AM

  • Thanks! There are many interesting things about math out there, and I hope to share them with you all. I'll be posting more of these!

    by aoum, Mar 7, 2025, 12:56 AM

  • Wow. This is a very interesting blog! I could really use this advice!

    by rayliu985, Mar 7, 2025, 12:43 AM

  • Thanks! Nice to hear that!

    by aoum, Mar 6, 2025, 10:56 PM

  • blog is great :) :coolspeak:

    by HacheB2031, Mar 6, 2025, 5:45 AM

  • Yes, I'll be doing problems of the day every day.

    by aoum, Mar 5, 2025, 1:15 AM

  • I think it would also be cool if you did a problem of the day every day, as I see from today's problem.

    by jocaleby1, Mar 5, 2025, 1:13 AM

  • Do you guys like my "lectures" or would you like something else?

    by aoum, Mar 4, 2025, 10:37 PM

  • Yeah, keep on making these "lectures" :)

    by jocaleby1, Mar 4, 2025, 2:41 AM

  • Thanks! Glad to hear that!

    by aoum, Mar 3, 2025, 10:28 PM

  • ME ME ME OMG I need a math mentor like this your explanation is so easy to understand! also 3rd shout! :D

    by expiredcraker, Mar 3, 2025, 3:32 AM

  • Anyone wants to contribute to my blog? Shout or give me a friend request!

    by aoum, Mar 2, 2025, 3:22 PM

  • Nice blog! Contrib?

    by jocaleby1, Mar 1, 2025, 6:43 PM

42 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
poll
Collatz Conjecture
Millennium Prize Problems
pi
Riemann Hypothesis
Sir Issac Newton
AMC
Chudnovsky Algorithm
Gauss-Legendre Algorithm
Goldbach Conjecture
infinity
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Nilakantha Series
P vs NP Problem
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bernoulli numbers
Bertrand s Box Paradox
binomial theorem
calculus
Cantor s Infinite Sets
cardinality
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cyclic Numbers
Different Sizes of Infinity
Diseases
Drake Equation
epidemiology
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Factorials
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
four color theorem
Fractals and Chaos Theory
free books
Golden Ratio
graph theory
gravity
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Hilbert s Hotel
Hodge Conjecture
Inclusion-exclusion
infinite
Irrational numbers
Law of Force and Acceleration
Leibniz Formula
Mastering AMC 8
Menger Sponge
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
P-adic Analysis
Parabolas
Paradox
paradoxes
Penrose Tilings
pie
prime numbers
probability
Pythagorean Theorem
Python
Reproduction Rate of Diseases
Sequences
Sets
Sierpinski Triangle
Simon s Factoring Trick
The Birthday Problem
The Book of Formulas
The Law of Action and Reaction
The Law of Inertia
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 64
  • Total visits: 530
  • Total comments: 24
Search Blog
a