Angle Relationships in Triangles

by steven_zhang123, May 14, 2025, 11:09 PM

In $\triangle ABC$, $AB > AC$. The internal angle bisector of $\angle BAC$ and the external angle bisector of $\angle BAC$ intersect the ray $BC$ at points $D$ and $E$, respectively. Given that $CE - CD = 2AC$, prove that $\angle ACB = 2\angle ABC$.

Long and wacky inequality

by Royal_mhyasd, May 12, 2025, 7:01 PM

Let $x, y, z$ be positive real numbers such that $x^2 + y^2 + z^2 = 12$. Find the minimum value of the following sum :
$$\sum_{cyc}\frac{(x^3+2y)^3}{3x^2yz - 16z - 8yz + 6x^2z}$$knowing that the denominators are positive real numbers.

Perpendicular passes from the intersection of diagonals, \angle AEB = \angle CED

by NO_SQUARES, May 5, 2025, 5:34 PM

Inside of convex quadrilateral $ABCD$ point $E$ was chosen such that $\angle DAE = \angle CAB$ and $\angle ADE = \angle CDB$. Prove that if perpendicular from $E$ to $AD$ passes from the intersection of diagonals of $ABCD$, then $\angle AEB = \angle CED$.

A game with balls and boxes

by egxa, Apr 30, 2023, 11:24 AM

Initially, Aslı distributes $1000$ balls to $30$ boxes as she wishes. After that, Aslı and Zehra make alternated moves which consists of taking a ball in any wanted box starting with Aslı. One who takes the last ball from any box takes that box to herself. What is the maximum number of boxes can Aslı guarantee to take herself regardless of Zehra's moves?

Integer FE Again

by popcorn1, Jul 20, 2021, 9:18 PM

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions:
  • $(i)$ $f(n) \neq 0$ for at least one $n$;
  • $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$;
  • $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$.

concyclic wanted, PQ = BP, cyclic quadrilateral and 2 parallelograms related

by parmenides51, Sep 25, 2020, 4:27 AM

Let $ABCD$ be a cyclic quadrilateral in which the lines $BC$ and $AD$ meet at a point $P$. Let $Q$ be the point of the line $BP$, different from $B$, such that $PQ = BP$. We construct the parallelograms $CAQR$ and $DBCS$. Prove that the points $C, Q, R, S$ lie on the same circle.
This post has been edited 1 time. Last edited by parmenides51, Sep 25, 2020, 4:30 AM

help me please

by thuanz123, Jan 17, 2016, 2:08 PM

find all $a,b \in \mathbb{Z}$ such that:
a) $3a^2-2b^2=1$
b) $a^2-6b^2=1$
This post has been edited 1 time. Last edited by thuanz123, Jan 17, 2016, 2:13 PM

Easy functional equation

by fattypiggy123, Jul 5, 2014, 8:41 AM

Find all functions from the reals to the reals satisfying
\[f(xf(y) + x) = xy + f(x)\]

Two circles, a tangent line and a parallel

by Valentin Vornicu, Oct 24, 2005, 10:15 AM

Two circles $ G_1$ and $ G_2$ intersect at two points $ M$ and $ N$. Let $ AB$ be the line tangent to these circles at $ A$ and $ B$, respectively, so that $ M$ lies closer to $ AB$ than $ N$. Let $ CD$ be the line parallel to $ AB$ and passing through the point $ M$, with $ C$ on $ G_1$ and $ D$ on $ G_2$. Lines $ AC$ and $ BD$ meet at $ E$; lines $ AN$ and $ CD$ meet at $ P$; lines $ BN$ and $ CD$ meet at $ Q$. Show that $ EP = EQ$.

Problem 5 (Second Day)

by darij grinberg, Jul 13, 2004, 2:49 PM

In a convex quadrilateral $ABCD$, the diagonal $BD$ bisects neither the angle $ABC$ nor the angle $CDA$. The point $P$ lies inside $ABCD$ and satisfies \[\angle PBC=\angle DBA\quad\text{and}\quad \angle PDC=\angle BDA.\] Prove that $ABCD$ is a cyclic quadrilateral if and only if $AP=CP$.
Attachments:
This post has been edited 2 times. Last edited by djmathman, Aug 1, 2015, 2:53 AM
Reason: formatting

Fun with math!

avatar

aoum
Archives
+ March 2025
Shouts
Submit
  • Check out the Pascal's Law post. I included a cartoon from the xkcd serial webcomic.

    by aoum, Today at 1:04 AM

  • If you leave a comment on one of my posts—especially older ones—I might not see it right away.

    by aoum, May 2, 2025, 11:55 PM

  • 100 posts!

    by aoum, Apr 21, 2025, 9:11 PM

  • Very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very cool (The maximum of the factorial machine is 7228!

    by Coin1, Apr 21, 2025, 4:44 AM

  • cool blog and good content but it looks eerily similar to chatgpt

    by SirAppel, Apr 17, 2025, 1:28 AM

  • 1,000 views!

    by aoum, Apr 17, 2025, 12:25 AM

  • Excellent blog. Contribute?

    by zhenghua, Apr 10, 2025, 1:27 AM

  • Are you asking to contribute or to be notified whenever a post is published?

    by aoum, Apr 10, 2025, 12:20 AM

  • nice blog! love the dedication c:
    can i have contrib to be notified whenever you post?

    by akliu, Apr 10, 2025, 12:08 AM

  • WOAH I JUST CAME HERE, CSS IS CRAZY

    by HacheB2031, Apr 8, 2025, 5:05 AM

  • Thanks! I'm happy to hear that! How is the new CSS? If you don't like it, I can go back.

    by aoum, Apr 8, 2025, 12:42 AM

  • This is such a cool blog! Just a suggestion, but I feel like it would look a bit better if the entries were wider. They're really skinny right now, which makes the posts seem a lot longer.

    by Catcumber, Apr 4, 2025, 11:16 PM

  • The first few posts for April are out!

    by aoum, Apr 1, 2025, 11:51 PM

  • Sure! I understand that it would be quite a bit to take in.

    by aoum, Apr 1, 2025, 11:08 PM

  • No, but it is a lot to take in. Also, could you do the Gamma Function next?

    by HacheB2031, Apr 1, 2025, 3:04 AM

60 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
combinatorics
Millennium Prize Problems
poll
Riemann Hypothesis
calculus
Collatz Conjecture
Factorials
graph theory
infinity
pi
Sir Issac Newton
AMC
Bernoulli numbers
Chudnovsky Algorithm
Exponents
Gauss-Legendre Algorithm
Goldbach Conjecture
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Matroids
Nilakantha Series
number theory
P vs NP Problem
P-adic Analysis
paradoxes
Polynomials
primes
probability
Ramsey Theory
1d
2D
3d
4d
algebra
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bell Curve
Bertrand s Box Paradox
binomial theorem
Birthday Attack
Birthday Problem
buffon s needle
Cantor s Infinite Sets
cardinality
catalan numbers
Center of a Triangle
Chicken McNugget Theorem
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cryptography
Cyclic Numbers
Cyclic Sieving Phenomenon
Different Sizes of Infinity
Diophantine Equations
Diophantinve Approximation
Dirichlets Approximation
Diseases
Double Factorials
Drake Equation
epidemiology
euclidean geometry
Euler Characteristic
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
First Dimenstion
four color theorem
Fourth dimension
Fractals and Chaos Theory
free books
Gamma function
Golden Ratio
Graham s Number
Graph Minor Theorem
gravity
Greedoids
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Higher Dimensions
Hilbert s Hotel
Hilberts Hotel
Hodge Conjecture
ideal gas law
Inclusion-exclusion
infinite
Irrational numbers
Kruskals Tree Theorem
Laplace s Equation
Law of Force and Acceleration
legendre s theorem
Leibniz Formula
logarithms
logic
Lucas-Lehmer Numbers
Mastering AMC 8
Matrices
Medoids
Menger Sponge
Mersenne numbers
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
normal distribution
Parabolas
Paradox
Pascal s Law
pascal s triangle
Penrose Tilings
physical chemistry
pie
pigeonhole principle
platonic solids
Price s Equation
prime numbers
Ptolemys Theorem
Pythagorean Theorem
Python
Ramsey s Theorem
recursion
Reproduction Rate of Diseases
Riemann Zeta Function
Second Dimension
Sequences
Sequences of Binomial Type
Sets
Sierpinski Triangle
Sierpiski Carpet
Sierpiski Triangle
Simon s Factoring Trick
Squaring the Circle
statistics
Sums of Like Powers
Taylor series
The Birthday Problem
The Book of Formulas
The HalesJewett Theorem
The Law of Action and Reaction
The Law of Inertia
The Lost Boarding Pass Problem
thermodynamics
Third Dimension
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
Umbral Calculus
Van der Waerdens Theorem
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 119
  • Total visits: 1432
  • Total comments: 40
Search Blog
a