My Unsolved Problem

by ZeltaQN2008, May 22, 2025, 3:07 PM

Let triangle \(ABC\) be inscribed in circle \((O)\). Let \((I_a)\) be the \(A\)-excircle of triangle \(ABC\), which is tangent to \(BC\), the extension of \(AB\), and the extension of \(AC\). Let \(BE\) and \(CF\) be the angle bisectors of triangle \(ABC\). Let \(EF\) intersect \((O)\) at two points \(S\) and \(T\).

a) Prove that circle \((O)\) bisects the segments \(I_aT\) and \(I_aS\).
b) Prove that \(S\) and \(T\) are the points of tangency of the common external tangents of circles \((O)\) and \((I_a)\) .

Functional equations

by mathematical-forest, May 22, 2025, 12:43 PM

Moving stones on an infinite row

by miiirz30, May 22, 2025, 10:53 AM

We are given an infinite row of cells extending infinitely in both directions. Some cells contain one or more stones. The total number of stones is finite. At each move, the player performs one of the following three operations:

1. Take three stones from some cell, and add one stone to the cells located one cell to the left and one cell to the right, each skipping one cell in between.

2. Take two stones from some cell, and add one stone to the cell one cell to the left, skipping one cell and one stone to the adjacent cell to the right.

3. Take one stone from each of two adjacent cells, and add one stone to the cell to the right of these two cells.

The process ends when no moves are possible. Prove that the process always terminates and the final distribution of stones does not depend on the choices of moves made by the player.

https://i.imgur.com/IjcIDOa.png

Proposed by Luka Tsulaia, Georgia
This post has been edited 1 time. Last edited by miiirz30, 5 hours ago

Cauchy and multiplicative function over a field extension

by miiirz30, May 22, 2025, 10:40 AM

Find all functions $f : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]$ such that for all $x, y \in \mathbb{Q}[\sqrt{2}]$,
$$
f(xy) = f(x)f(y) \quad \text{and} \quad f(x + y) = f(x) + f(y),
$$where $\mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$.

Proposed by Stijn Cambie, Belgium

functional inequality with equality

by miiirz30, May 22, 2025, 10:32 AM

Find all functions \( f : \mathbb{R} \to \mathbb{R} \) such that the following two conditions hold:

1. For all real numbers $a$ and $b$ satisfying $a^2 + b^2 = 1$, We have $f(x) + f(y) \geq f(ax + by)$ for all real numbers $x, y$.

2. For all real numbers $x$ and $y$, there exist real numbers $a$ and $b$, such that $a^2 + b^2 = 1$ and $f(x) + f(y) = f(ax + by)$.

Proposed by Zaza Melikidze, Georgia
This post has been edited 1 time. Last edited by miiirz30, 5 hours ago

Interesting inequalities

by sqing, May 21, 2025, 1:25 PM

Let $ a,b,c,d\geq  0 , a+b+c+d \leq 4.$ Prove that
$$a(bc+bd+cd)  \leq \frac{256}{81}$$$$ ab(a+2c+2d ) \leq \frac{256}{27}$$$$  ab(a+3c+3d )  \leq \frac{32}{3}$$$$ ab(c+d ) \leq \frac{64}{27}$$
This post has been edited 1 time. Last edited by sqing, Yesterday at 2:06 PM

A sharp one with 3 var

by mihaig, May 13, 2025, 7:20 PM

Hard Functional Equation in the Complex Numbers

by yaybanana, Apr 9, 2025, 3:29 PM

Circles, Tangents, Variable point on BC

by SerdarBozdag, Mar 19, 2022, 5:38 PM

In triangle $ABC$, $D$ is an arbitrary point on $BC$. $(ADC), (ADB)$ cuts $AB$, $AC$ at $F$ and $E$ respectively. Tangents at $B$ and $C$ intersect at $X$. $Z=EF \cap BX$ and $Y=EF \cap CX$. $P$ is a point on $(ABC)$ such that $AP, YZ, BC$ are concurrent. Prove that $P$ lies on $(XYZ)$

Proposed by SerdarBozdag and k12byda5h

22 light bulbs

by dangerousliri, Mar 6, 2022, 2:33 PM

$22$ light bulbs are given. Each light bulb is connected to exactly one switch, but a switch can be connected to one or more light bulbs. Find the least number of switches we should have such that we can turn on whatever number of light bulbs.

Fun with math, science, and programming!

avatar

aoum
Archives
+ March 2025
Shouts
Submit
  • Take a look at The British Flag Theorem post. I've included a working Python program.

    by aoum, May 17, 2025, 1:05 AM

  • Check out the Pascal's Law post. I included a cartoon from the xkcd serial webcomic.

    by aoum, May 15, 2025, 1:04 AM

  • If you leave a comment on one of my posts—especially older ones—I might not see it right away.

    by aoum, May 2, 2025, 11:55 PM

  • 100 posts!

    by aoum, Apr 21, 2025, 9:11 PM

  • Very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very cool (The maximum of the factorial machine is 7228!

    by Coin1, Apr 21, 2025, 4:44 AM

  • cool blog and good content but it looks eerily similar to chatgpt

    by SirAppel, Apr 17, 2025, 1:28 AM

  • 1,000 views!

    by aoum, Apr 17, 2025, 12:25 AM

  • Excellent blog. Contribute?

    by zhenghua, Apr 10, 2025, 1:27 AM

  • Are you asking to contribute or to be notified whenever a post is published?

    by aoum, Apr 10, 2025, 12:20 AM

  • nice blog! love the dedication c:
    can i have contrib to be notified whenever you post?

    by akliu, Apr 10, 2025, 12:08 AM

  • WOAH I JUST CAME HERE, CSS IS CRAZY

    by HacheB2031, Apr 8, 2025, 5:05 AM

  • Thanks! I'm happy to hear that! How is the new CSS? If you don't like it, I can go back.

    by aoum, Apr 8, 2025, 12:42 AM

  • This is such a cool blog! Just a suggestion, but I feel like it would look a bit better if the entries were wider. They're really skinny right now, which makes the posts seem a lot longer.

    by Catcumber, Apr 4, 2025, 11:16 PM

  • The first few posts for April are out!

    by aoum, Apr 1, 2025, 11:51 PM

  • Sure! I understand that it would be quite a bit to take in.

    by aoum, Apr 1, 2025, 11:08 PM

61 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
combinatorics
Millennium Prize Problems
poll
Riemann Hypothesis
calculus
Collatz Conjecture
Factorials
graph theory
infinity
pi
Sir Issac Newton
AMC
Bernoulli numbers
Chudnovsky Algorithm
Exponents
Gauss-Legendre Algorithm
Goldbach Conjecture
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Matroids
Nilakantha Series
number theory
P vs NP Problem
P-adic Analysis
paradoxes
Polynomials
primes
probability
Ramsey Theory
1d
2D
3d
4d
algebra
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bell Curve
Bertrand s Box Paradox
binomial theorem
Birthday Attack
Birthday Problem
British Flag Theorem
buffon s needle
Cantor s Infinite Sets
cardinality
catalan numbers
Center of a Triangle
Chicken McNugget Theorem
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
continuum hypothesis
Cryptography
Cyclic Numbers
Cyclic Sieving Phenomenon
Different Sizes of Infinity
Diophantine Equations
Diophantinve Approximation
Dirichlets Approximation
Diseases
Double Factorials
Drake Equation
epidemiology
euclidean geometry
Euler Characteristic
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
First Dimenstion
four color theorem
Fourth dimension
Fractals and Chaos Theory
free books
Gamma function
Golden Ratio
Graham s Number
Graph Minor Theorem
gravity
Greedoids
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Higher Dimensions
Hilbert s Hotel
Hilberts Hotel
Hodge Conjecture
ideal gas law
Inclusion-exclusion
infinite
Irrational numbers
Kruskals Tree Theorem
Laplace s Equation
Law of Force and Acceleration
legendre s theorem
Leibniz Formula
logarithms
logic
Lucas-Lehmer Numbers
Mastering AMC 8
Matrices
Medoids
Menger Sponge
Mersenne numbers
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
normal distribution
Parabolas
Paradox
Pascal s Law
pascal s triangle
Penrose Tilings
physical chemistry
pie
pigeonhole principle
platonic solids
Price s Equation
prime numbers
Ptolemys Theorem
Pythagorean Theorem
Python
Ramsey s Theorem
recursion
Reproduction Rate of Diseases
Riemann Zeta Function
Second Dimension
Sequences
Sequences of Binomial Type
set theory
Sets
Sierpinski Triangle
Sierpiski Carpet
Sierpiski Triangle
Simon s Factoring Trick
Squaring the Circle
statistics
Sums of Like Powers
Taylor series
The Birthday Problem
The Book of Formulas
The HalesJewett Theorem
The Law of Action and Reaction
The Law of Inertia
The Lost Boarding Pass Problem
thermodynamics
Third Dimension
time travel
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
Umbral Calculus
Van der Waerdens Theorem
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 122
  • Total visits: 1479
  • Total comments: 40
Search Blog
a