Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
source own
Bet667   5
N 31 minutes ago by GeoMorocco
Let $x,y\ge 0$ such that $2(x+y)=1+xy$ then find minimal value of $$x+\frac{1}{x}+\frac{1}{y}+y$$
5 replies
Bet667
2 hours ago
GeoMorocco
31 minutes ago
Cross-ratio Practice!
shanelin-sigma   3
N 33 minutes ago by MENELAUSS
Source: 2024 imocsl G3 (Night 6-G)
Triangle $ABC$ has circumcircle $\Omega$ and incircle $\omega$, where $\omega$ is tangent to $BC, CA, AB$ at $D,E,F$, respectively. $T$ is an arbitrary point on $\omega$. $EF$ meets $BC$ at $K$, $AT$ meets $\Omega$ again at $P$, $PK$ meets $\Omega$ again at $S$. $X$ is a point on $\Omega$ such that $S, D, X$ are colinear. Let $Y$ be the intersection of $AX$ and $EF$, prove that $YT$ is tangent to $\omega$.

Proposed by chengbilly
3 replies
1 viewing
shanelin-sigma
Aug 8, 2024
MENELAUSS
33 minutes ago
Segment ratio
xeroxia   3
N 33 minutes ago by Blackbeam999
Let $B$ and $C$ be points on a circle with center $A$.
Let $D$ be a point on segment $AB$.
Let $F$ be one of the intersections of the circle with center $D$ and passing through $B$ and the circle with diameter $DC$.
Prove that $\dfrac {AD}{AC} = \dfrac {CF^2}{CB^2}$.
3 replies
xeroxia
Sep 11, 2024
Blackbeam999
33 minutes ago
Iran second round 2025-q1
mohsen   1
N an hour ago by sami1618
Find all positive integers n>2 such that sum of n and any of its prime divisors is a perfect square.
1 reply
+1 w
mohsen
Today at 10:21 AM
sami1618
an hour ago
Calculus BC help
needcalculusasap45   0
5 hours ago
So basically, I have the AP Calculus BC exam in less than a month, and I have only covered until Unit 6 or 7 of the cirriculum. I am self studying this course (no teacher) and have not had much time to study bc of 6 other APs. I need to finish 8, 9, and 10 in less than 2 weeks. What can I do ? I would appreciate any help or resources anyone could provide. Could I just learn everything from barrons and princeton? Also, I have not taken AP Calculus AB before.

0 replies
needcalculusasap45
5 hours ago
0 replies
Inequalities
sqing   9
N 5 hours ago by sqing
Let $ a,b,c> 0 $ and $  \frac{a}{a^2+ab+c}+\frac{b}{b^2+bc+a}+\frac{c}{c^2+ca+b} \geq 1$. Prove that
$$  a+b+c\leq 3    $$
9 replies
sqing
Apr 4, 2025
sqing
5 hours ago
Geometry
German_bread   1
N Today at 12:01 PM by vanstraelen
A semicircle k with radius r is constructed over the line segment ST. Let D be a point on the line segment ST that is different from S and T. The two squares ABCD and DEF G lie in the half-plane of the semicircle such that points B and F lie on the semicircle k and points S, C, D, E, and T lie on a straight line in that order. (Points A and/or G can also lie outside the semicircle if necessary.)
Investigate whether the sum of the areas of the squares ABCD and DEFG depends on the position of point D on the line segment ST.

German math olympiad, class 9, 2022
1 reply
German_bread
Today at 10:00 AM
vanstraelen
Today at 12:01 PM
Indonesia Regional MO 2019 Part A
parmenides51   22
N Today at 10:43 AM by SomeonecoolLovesMaths
Indonesia Regional MO
Year 2019 Part A

Time: 90 minutes Rules


p1. In the bag there are $7$ red balls and $8$ white balls. Audi took two balls at once from inside the bag. The chance of taking two balls of the same color is ...


p2. Given a regular hexagon with a side length of $1$ unit. The area of the hexagon is ...


p3. It is known that $r, s$ and $1$ are the roots of the cubic equation $x^3 - 2x + c = 0$. The value of $(r-s)^2$ is ...


p4. The number of pairs of natural numbers $(m, n)$ so that $GCD(n,m) = 2$ and $LCM(m,n) = 1000$ is ...


p5. A data with four real numbers $2n-4$, $2n-6$, $n^2-8$, $3n^2-6$ has an average of $0$ and a median of $9/2$. The largest number of such data is ...


p6. Suppose $a, b, c, d$ are integers greater than $2019$ which are four consecutive quarters of an arithmetic row with $a <b <c <d$. If $a$ and $d$ are squares of two consecutive natural numbers, then the smallest value of $c-b$ is ...


p7. Given a triangle $ABC$, with $AB = 6$, $AC = 8$ and $BC = 10$. The points $D$ and $E$ lies on the line segment $BC$. with $BD = 2$ and $CE = 4$. The measure of the angle $\angle DAE$ is ...


p8. Sequqnce of real numbers $a_1,a_2,a_3,...$ meet $\frac{na_1+(n-1)a_2+...+2a_{n-1}+a_n}{n^2}=1$ for each natural number $n$. The value of $a_1a_2a_3...a_{2019}$ is ....


p9. The number of ways to select four numbers from $\{1,2,3, ..., 15\}$ provided that the difference of any two numbers at least $3$ is ...


p10. Pairs of natural numbers $(m , n)$ which satisfies $$m^2n+mn^2 +m^2+2mn = 2018m + 2019n + 2019$$are as many as ...


p11. Given a triangle $ABC$ with $\angle ABC =135^o$ and $BC> AB$. Point $D$ lies on the side $BC$ so that $AB=CD$. Suppose $F$ is a point on the side extension $AB$ so that $DF$ is perpendicular to $AB$. The point $E$ lies on the ray $DF$ such that $DE> DF$ and $\angle ACE = 45^o$. The large angle $\angle AEC$ is ...


p12. The set of $S$ consists of $n$ integers with the following properties: For every three different members of $S$ there are two of them whose sum is a member of $S$. The largest value of $n$ is ....


p13. The minimum value of $\frac{a^2+2b^2+\sqrt2}{\sqrt{ab}}$ with $a, b$ positive reals is ....


p14. The polynomial P satisfies the equation $P (x^2) = x^{2019} (x+ 1) P (x)$ with $P (1/2)= -1$ is ....


p15. Look at a chessboard measuring $19 \times 19$ square units. Two plots are said to be neighbors if they both have one side in common. Initially, there are a total of $k$ coins on the chessboard where each coin is only loaded exactly on one square and each square can contain coins or blanks. At each turn. You must select exactly one plot that holds the minimum number of coins in the number of neighbors of the plot and then you must give exactly one coin to each neighbor of the selected plot. The game ends if you are no longer able to select squares with the intended conditions. The smallest number of $k$ so that the game never ends for any initial square selection is ....
22 replies
parmenides51
Nov 11, 2021
SomeonecoolLovesMaths
Today at 10:43 AM
Maximizing the Sum of Minimum Differences in Permutations
chinawgp   0
Today at 10:20 AM
Problem Statement

Given a positive integer n \geq 3 , consider a permutation \pi = (a_1, a_2, \dots, a_n) of \{1, 2, \dots, n\} . For each i ( 1 \leq i \leq n-1 ), define d_i as the minimum absolute difference between a_i and any subsequent element a_j ( j > i ), i.e.,
d_i = \min \{ |a_i - a_j| \mid j > i \}.

Let S_n denote the maximum possible sum of d_i over all permutations of \{1, \dots, n\} , i.e.,
S_n = \max_{\pi} \sum_{i=1}^{n-1} d_i.

Proposed Construction

I found a method to construct a permutation that seems to maximize \sum d_i :
1. Fix a_{n-1} = 1 and a_n = n .
2. For each i (from n-2 down to 1 ):
- Sort a_{i+1}, a_{i+2}, \dots, a_n in increasing order.
- Compute the gaps between consecutive elements.
- Place a_i in the middle of the largest gap (if the gap has even length, choose the smaller midpoint).

Partial Results

1. I can prove that 1 and n must occupy the last two positions. Otherwise, moving either 1 or n further right does not decrease \sum d_i .
2. The construction greedily maximizes each d_i locally, but I’m unsure if this ensures global optimality.

Request for Help

- Does this construction always yield the maximum S_n ?
- If yes, how can we rigorously prove it? (Induction? Exchange arguments?)
- If no, what is the correct approach?

Observations:
- The construction works for small n (e.g., n=3,4,5,...,12 ).
- The problem resembles optimizing "minimum gaps" in permutations.

Any insights or references would be greatly appreciated!
0 replies
chinawgp
Today at 10:20 AM
0 replies
no of integer soultions of ||x| - 2020| < 5 - IOQM 2020-21 p5
parmenides51   9
N Today at 9:11 AM by AshAuktober
Find the number of integer solutions to $||x| - 2020| < 5$.
9 replies
parmenides51
Jan 18, 2021
AshAuktober
Today at 9:11 AM
Geometry
German_bread   2
N Today at 8:31 AM by German_bread
Let P be a point in a square ABCD. The lengths of segments PA, PB, PC are 17, 11 and 5 respectively. Determine the area of the square and if it can’t be determined exactly, all possible values are to be listed.

German math Olympiad, Class 9, 2024

It’s my first time posting - please excuse any mistakes
2 replies
German_bread
Yesterday at 7:59 PM
German_bread
Today at 8:31 AM
A Loggy Problem from Pythagoras
Mathzeus1024   6
N Today at 8:01 AM by Mathzeus1024
Prove or disprove: $\exists x \in \mathbb{R}^{+}$ such that $\ln(x), \ln(2x), \ln(3x)$ are the lengths of a right triangle.
6 replies
Mathzeus1024
Yesterday at 10:55 AM
Mathzeus1024
Today at 8:01 AM
Nesbitt inequality
Mathskidd   1
N Today at 7:20 AM by sqing


$$
$$Would anyone tell me whether the number of ways for proving Nesbitt inequality more than one hundred ?
1 reply
Mathskidd
Today at 5:08 AM
sqing
Today at 7:20 AM
Algebra Problems
ilikemath247365   10
N Today at 4:25 AM by lgx57
Find all real $(a, b)$ with $a + b = 1$ such that

$(a + \frac{1}{a})^{2} + (b + \frac{1}{b})^{2} = \frac{25}{2}$.
10 replies
ilikemath247365
Apr 14, 2025
lgx57
Today at 4:25 AM
Geometry with parallel lines.
falantrng   32
N Mar 23, 2025 by endless_abyss
Source: RMM 2018,D1 P1
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .
32 replies
falantrng
Feb 24, 2018
endless_abyss
Mar 23, 2025
Geometry with parallel lines.
G H J
G H BBookmark kLocked kLocked NReply
Source: RMM 2018,D1 P1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
falantrng
250 posts
#1 • 8 Y
Y by microsoft_office_word, itslumi, k12byda5h, mathematicsy, harshmishra, Adventure10, Rounak_iitr, cubres
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .
This post has been edited 1 time. Last edited by falantrng, Feb 24, 2018, 12:11 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rmtf1111
698 posts
#2 • 5 Y
Y by microsoft_office_word, Euiseu, translate, Adventure10, cubres
Denote by $\omega$ the circumcircle of $ABCD$. Let $\{T\} = DQ \cap \omega$. By converse of Reim's Theorem on the parallel lines $PK \mid \mid CD$ and circle $\omega$ we have that $BDTK$ is cyclic. By converse of Reim's Theorem on the parallel lines $LQ \mid \mid BD$ and circle $\omega$ we have that $CQTL$ is cyclic. Now because $\angle{ACT}=\angle{ABT}$ we have that the lines tangent to the circumcircles of $QCT$ and $BDT$ at $T$ coincide, thus the circumcircles of the triangles $BKP$ and $CLQ$ are tangent at $T$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GGPiku
402 posts
#3 • 3 Y
Y by tbn456834678, Adventure10, cubres
Pretty easy problem compared to the ones from the last year. A bit too easy.
Let $DP$ intersect $(ABCD)$ in $D$ and $S$. We can easily observ that $S$ is on both circumcircles of $BKP$ and $CLQ$.
Indeed, $\angle PSB=180-\angle BCB=\angle PKB$, since $PK\parallel CD$, so $P,B,K,S$ are concyclic, and $\angle QSC=\angle DBC=\angle QLC$, so $Q,C,L,S$ are concyclic.
Now, for an easier explanation, if we let $d$ be the tangent in $S$ at $(BKP)$, and $R$ a point on $d$ such that $L,R$ are on opposite sides wrt $SB$, we'll have $\angle RSP=\angle ABS=\angle ACS=\angle QLS$, so $d$ is tangent in $S$ at $(CLQ)$. This concludes the tangency of $BKP$ and $CLQ$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WizardMath
2487 posts
#4 • 3 Y
Y by Adventure10, Mango247, cubres
The intersection of $PD$ and $(ABCD)$ is $X$. $\measuredangle PKB = \measuredangle PXB$, so $PKBX, CQLX$ are cyclic. Now $XK, XB$ are isogonal in $XLC$ so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BarishNamazov
124 posts
#5 • 4 Y
Y by tenplusten, Adventure10, Mango247, cubres
Too easy.Let $T=DP\cap \odot (ABCD) $.Easy angle-chasing implies that $CLTQ$,$BKTP $ are cyclic.Again chasing some angles $\angle LTK=\angle BAC=\angle CTB$ which yields that $TK,TB $ are isogonals wrt $TLC $ which finishes problem.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
randomusername
1059 posts
#6 • 2 Y
Y by Adventure10, cubres
Letting $O=DP\cap BC$ (assuming it exists), then Power of a Point wrt secants $OD,OC$ shows that $(BKPT)$ and $(CLQT)$ are cyclic, where $T=(ABCD)\cap OD$. (Since the diagram varies continuously as $P$ varies continuously, this proves they are cyclic even if $DP$ and $BC$ are parallel.)

To show tangency, note that by angle chasing $PTK\sim ATC$ and $ATB\sim QTL$. Hence there exist spiral similarities $\phi,\psi$ centered at $T$ with $\phi(PTK)=ATC$ and $\psi(ATB)=QTL$. Then $\phi\circ \psi$ maps $P\to Q$, hence it's a homothety, and circles $(PTK)$ and $(QTL)$ are homothetic (with center $T$), as desired.
This post has been edited 1 time. Last edited by randomusername, Feb 24, 2018, 6:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trumpeter
3332 posts
#7 • 2 Y
Y by Adventure10, cubres
Let $E=PD\cap\left(ABCD\right)$. Then \[\measuredangle{PEB}=\measuredangle{DEB}=\measuredangle{DCB}=\measuredangle{PKB},\]so $EPBK$ is cyclic. Similarly, $EQCL$ is cyclic.

Let $\ell_B,\ell_C$ be the tangents to $\left(EPBK\right),\left(EQCL\right)$ at $E$. Then \[\measuredangle{\left(\ell_B,ED\right)}=\measuredangle{EBP}=\measuredangle{EBA}=\measuredangle{ECA}=\measuredangle{ECQ}=\measuredangle{\left(\ell_C,ED\right)},\]so $\ell_B=\ell_C$ and hence $\left(BKP\right)$ and $\left(CLQ\right)$ are tangent.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
djmathman
7938 posts
#8 • 3 Y
Y by Adventure10, Mango247, cubres
asdf took way too long (and Geogebra help) for me to realize that phantom pointing basically kills this problem; time to draw better diagrams I guess :oops:

Let $X = PQD\cap\odot(ABCD)$. Note that \[\angle PXB \equiv\angle DXB = \angle DAB = \angle PKB,\]so $PBKX$ is cyclic. Similarly, $QCLX$ is cyclic. We can thus get rid of $K$ and $L$, since it suffices to show that the circles $\odot(BPX)$ and $\odot(CQX)$ are tangent to each other. But upon letting $O_B$ and $O_C$ be their respective centers, we obtain \[\angle O_BXP = 90^\circ - \angle XBP = 90^\circ - \angle XCQ = O_CXQ,\]so $X$, $O_B$, and $O_C$ are collinear, implying the tangency. $\blacksquare$
This post has been edited 2 times. Last edited by djmathman, Mar 17, 2018, 11:40 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kala_Para_Na
28 posts
#9 • 3 Y
Y by Adventure10, Mango247, cubres
$PD \cap \odot ABCD = \{ D,X \}$
By Reim's theorem, $X \in \odot BKP$ and $X \in \odot QLC$
Angle chasing yields, $\angle AXC = \angle PXK$ and $\angle AXB = \angle QXL$ which implies $K$ and $B$ are isogonal in $\triangle XLC$
it leads us to our conclusion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kagebaka
3001 posts
#10 • 3 Y
Y by AlastorMoody, Adventure10, cubres
huh no inversion?

Solution

also @post 2 I think you meant $BPTK$ cyclic not $BDTK$ cyclic
This post has been edited 1 time. Last edited by Kagebaka, Jul 7, 2019, 1:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IndoMathXdZ
691 posts
#11 • 2 Y
Y by Adventure10, cubres
Nice Problem :) Here is a boring solution.
Denote the intersection of $PQ$ with $(ABCD)$ as $G$, other than $D$.
We claim that the tangency point is $G$.

Claim 01. $G$ lies on both $(BKP)$ and $(CLQ)$. In other words, $BKGP$ and $CLGQ$ are both cyclic.
Proof. Notice that \[ \measuredangle BKP = \measuredangle BCD = \measuredangle BAD = \measuredangle BGD \equiv \measuredangle BGP\]Similarly,
\[ \measuredangle LQG = \measuredangle BDG = \measuredangle BCG \equiv \measuredangle LCG \]
Claim 02. Let $GK$ intersects $(CQL)$ at $H$. Then , $HQ \parallel PK$.
Proof. We'll prove this by phantom point. Notice that
\[ \measuredangle GHQ = \measuredangle GKP = \measuredangle GBP = \measuredangle GBA = \measuredangle GCA = \measuredangle GCQ \]which is what we wanted.
Therefore, $G$ sends $KP$ to $HQ$, which makes $G$ the tangency point of the two circle.
This post has been edited 1 time. Last edited by IndoMathXdZ, Nov 16, 2019, 7:36 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#12 • 4 Y
Y by a_simple_guy, Adventure10, Mango247, cubres
Solution (with PUjnk)
This post has been edited 2 times. Last edited by AlastorMoody, Dec 13, 2019, 7:41 PM
Reason: Give credit to poor PUjnk's soul... lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
amar_04
1915 posts
#13 • 5 Y
Y by mueller.25, GeoMetrix, BinomialMoriarty, Bumblebee60, cubres
Storage.
RMM 2018 Day 1 P1 wrote:
Let $ABCD$ be a cyclic quadrilateral an let $P$ be a point on the side $AB.$ The diagonals $AC$ meets the segments $DP$ at $Q.$ The line through $P$ parallel to $CD$ mmets the extension of the side $CB$ beyond $B$ at $K.$ The line through $Q$ parallel to $BD$ meets the extension of the side $CB$ beyond $B$ at $L.$ Prove that the circumcircles of the triangles $BKP$ and $CLQ$ are tangent .

Let $DP\cap\odot(ABC)=X$. Then $\angle KPX=\angle CDX=\angle XBK\implies X,K,B,P$ are concyclic. And $\angle XQL=\angle XDB=\angle XCL\implies L,C,Q,X$ are concyclic, Now $$\angle LXK=\angle LXQ-\angle KXP=(180^\circ-\angle BCA)-(180^\circ-\angle ABL)=\angle ABL-\angle BCA=\angle BAC=\angle BXC$$So, $\{XK,XB\}$ are isogonal WRT $\triangle LXC\implies\odot(BKP)$ and $\odot(CLQ)$ are tangent to each other at $X$. $\blacksquare$
This post has been edited 4 times. Last edited by amar_04, Mar 14, 2020, 9:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
itslumi
284 posts
#14 • 1 Y
Y by cubres
1)Let $(CLQ)n(ABCD)=X$ ,prove that $(BPXK)$-cyclic and $(BPXK)$ tangent to $(CLQ)$.

2)Prove that $X-Q-D$ collnear
$\angle CLQ=\angle CXQ$
but
$\angle CXD=\angle CAD$,which implies that $\angle CXD=\angle CXQ$,which implies the desired collinearity

3)Prove that $(BKXP)-cyclic$

$\angle DCY=\angle DAB=\angle BKP$
and
its obvious that $\angle BXP=\angle BAD$,which implies the desired claim

4)Let $\ell$ be a line that passes through $X$ and tangent to $(CQL)$.Prove that $\ell$ is tangent to $(KBPX)$ at $X$.
$\angle QLX=\angle QX=\angle QCX=\angle ACX=\angle ABX=\angle PKX$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
554183
484 posts
#15 • 1 Y
Y by cubres
:D
Let $PQ \cap \odot{ABCD}=E$. I claim that $E$ is the point of tangency.
First I will prove that $EQCL$ is cyclic
$$\angle{QLC}=\angle{DBC}=\angle{DEC}$$Similarly,
$$\angle{BKP}=180-\angle{DCB}=180-(180-\angle{DEB})=\angle{DEB}$$Hence $EPBK$ is cyclic.
To finish, we present the following claim :
Claim : $\angle{PBE}=\angle{QLE}$
Proof. $$\angle{QLE}=\angle{QCE}=\angle{ABE}=\angle{PBE}$$Now, draw a tangent to $\odot{BKP}$ at $E$. Let $G$ be an arbitrary point on the tangent inside $\odot{ABC}$. We see that
$$\angle{GEQ}=\angle{GEP}=\angle{EBP}=\angle{ELQ}$$So we are done $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BVKRB-
322 posts
#16 • 1 Y
Y by cubres
Nice diagram = Problem done! :D (And this time it's on paper!)

Let $\odot(ABC) \cap \odot(LQC) = X$
We claim that $X$ is the desired tangency point

Claim: $D-Q-P-F$ are collinear
Proof

Hence One of $\odot(CLQ) \cap \odot(BKP)=X$

Now draw the line that is tangent to $\odot(LQC)$ at $T$ and name it $\ell$ and let a point on $\ell$ on the same side of $F$ as $L$ be $Y$
We know that $$\angle YFL= \angle  XCL = \angle XQL = \angle  XDB$$and after some easy angle chasing we get $\angle  XPK = \angle  XDC = \angle  YXL + \angle  CXB$ Therefore it suffices to show that $XK,XB$ are isogonal in $\triangle XLC$
This is true after some angle chasing which I am too lazy to write, just assume variables and calculate each angle, which finally gives the desired conclusion $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HoRI_DA_GRe8
597 posts
#17 • 1 Y
Y by cubres
solution
This post has been edited 1 time. Last edited by HoRI_DA_GRe8, Nov 22, 2021, 6:24 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
REYNA_MAIN
41 posts
#18 • 2 Y
Y by BVKRB-, cubres
Shortage
Just orsing BVKRB
HELP?
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
UI_MathZ_25
116 posts
#19 • 1 Y
Y by cubres
The line $DP$ meets the circumcircle of triangle $CLQ$ at $R$. We get

$\angle RDB = \angle RQL = \angle RCL = \angle RCB \Rightarrow$ $R$ lie on $\odot(ABCD)$.

Since $PK \parallel CD$, by the Reim's Theorem we get that $RBKP$ is cyclic.

Finally, let $X$ be the intersection of the tangent to $\odot(CLQ)$ at $R$ with the line $CD$. Thus

$\angle XRQ = \angle RCQ = \angle RCA = \angle RBA = \angle RBP \Rightarrow$ $XR$ is tangent to$\odot (RBP)$.

Therefore, the circumcircles of the triangles $BKP$ and $CLQ$ are tangent to the line $XR$ at $R$ $\blacksquare$
Attachments:
This post has been edited 1 time. Last edited by UI_MathZ_25, Dec 23, 2021, 11:03 PM
Reason: Figure
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
693 posts
#20 • 1 Y
Y by cubres
Let $DQ$ meet $ABCD$ at $S$.
$\angle QLC = \angle DBC = \angle QSC \implies SLCQ$ is cyclic. $\angle BKP = \angle 180 - \angle BCD = \angle BSP \implies BKSP$ is cyclic. Let $L_1$ be line tangent to $SLCQ$ at $S$ we have $\angle SCQ = \angle SCA = \angle SBA = \angle SBP \implies L_1$ is tangent to $BKSP$ as well so our circles are tangent at $S$.
we're Done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SatisfiedMagma
458 posts
#21 • 2 Y
Y by Rounak_iitr, cubres
Let $E= DQ \cap \odot(ABCD) \ne D$. We will prove that $E$ is the common point of tangency.

[asy]
            import graph; size(12cm);
            real labelscalefactor = 0.5; /* changes label-to-point distance */
            pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
            pen dotstyle = black; /* point style */
            real xmin = 1.9, xmax = 11.2, ymin = -2.5862804185721906, ymax = 5.031020679728067;  /* image dimensions */
            pen cqcqcq = rgb(0.7529411764705882,0.7529411764705882,0.7529411764705882);
            /* draw figures */
            draw(circle((5.852809635608784,1.367535756966066), 3.5453838571445635), linewidth(0.8) + blue);
            draw((3.741438563859456,4.215668284058398)--(9.,3.), linewidth(0.8) + green);
            draw((9.,3.)--(6.68,-2.08), linewidth(0.8) + green);
            draw((6.68,-2.08)--(2.373492429373072,0.6862880245710273), linewidth(0.8) + green);
            draw((3.741438563859456,4.215668284058398)--(2.373492429373072,0.6862880245710273), linewidth(0.8) + green);
            draw((9.,3.)--(2.373492429373072,0.6862880245710273), linewidth(0.8) + green);
            draw(circle((8.003294213009466,3.084537618648431), 1.0002844769300214), linewidth(0.8) + red);
            draw((9.,3.)--(9.306489730729668,3.6711068241839295), linewidth(0.8) + green);
            draw((9.306489730729668,3.6711068241839295)--(4.739858471858444,2.07662144581455), linewidth(0.8) + green);
            draw((8.719877477199834,2.3866282690410148)--(7.070615206872309,3.4460329938583647), linewidth(0.8) + green);
            draw((4.739858471858444,2.07662144581455)--(8.141511444765205,4.075226788687628), linewidth(0.8) + green);
            draw((8.141511444765205,4.075226788687628)--(9.,3.), linewidth(0.8) + green);
            draw((2.373492429373072,0.6862880245710273)--(4.739858471858444,2.07662144581455), linewidth(0.8) + green);
            draw(circle((7.702470722917133,0.9283479023436838), 3.1773579402953915), linewidth(0.8) + red);
            draw((3.741438563859456,4.215668284058398)--(6.68,-2.08), linewidth(0.8) + green);
            draw((8.141511444765205,4.075226788687628)--(6.68,-2.08), linewidth(0.8) + green);
            /* dots and labels */
            dot((3.741438563859456,4.215668284058398),dotstyle);
            label("$A$", (3.551178767049365,4.389270037746726), NE * labelscalefactor);
            dot((9.,3.),dotstyle);
            label("$B$", (9.14557023301717,2.8686000382692027), NE * labelscalefactor);
            dot((6.68,-2.08),dotstyle);
            label("$C$", (6.606469866917069,-2.4049161067078986), NE * labelscalefactor);
            dot((2.373492429373072,0.6862880245710273),dotstyle);
            label("$D$", (2.0584109693971078,0.5666683876839601), NE * labelscalefactor);
            dot((7.070615206872309,3.4460329938583647),dotstyle);
            label("$P$", (6.941296288820379,3.6219594875516457), NE * labelscalefactor);
            dot((4.739858471858444,2.07662144581455),linewidth(4.pt) + dotstyle);
            label("$Q$", (4.471951427283468,2.101289488074122), NE * labelscalefactor);
            dot((8.719877477199834,2.3866282690410148),linewidth(4.pt) + dotstyle);
            label("$K$", (8.852597113851774,2.198947194462587), NE * labelscalefactor);
            dot((9.306489730729668,3.6711068241839295),linewidth(4.pt) + dotstyle);
            label("$L$", (9.368787847619377,3.7893726985033), NE * labelscalefactor);
            dot((8.141511444765205,4.075226788687628),linewidth(4.pt) + dotstyle);
            label("$E$", (8.196895370957792,4.18000352405716), NE * labelscalefactor);
            clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]

Claim: $E \in \odot(PBK)$ and $E \in \odot(CQL)$.

Proof: For $PBKE$ we have
\[ \measuredangle DEB = \measuredangle DCB = \measuredangle PKB. \]For $CQLE$ we have
\[ \measuredangle ECL = \measuredangle ECB = \measuredangle EDB = \measuredangle EQL. \]This shows the claim. $\square$

To finish it off, it suffices to show that $\measuredangle EBP = \measuredangle ECQ$ by considering a tangent to either $\odot(PBKE)$ or $\odot(CQLE)$ at $E$. This part is obviously true as
\[\measuredangle EBP = \measuredangle EBA = \measuredangle ECA = \measuredangle ECQ.\]So, we are done. $\blacksquare$
This post has been edited 1 time. Last edited by SatisfiedMagma, May 8, 2022, 6:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#22 • 2 Y
Y by centslordm, cubres
Let $T=(ABC)\cap\overline{PQ}.$ Note $$\measuredangle TPK=\measuredangle PDC=\measuredangle TBC=\measuredangle TBK$$and $$\measuredangle CKQ=\measuredangle CBD=\measuredangle CTD$$so $T$ lies on $(BKP)$ and $(CLQ).$ Let $\ell$ be the line tangent to $(CLQ)$ at $T$; we claim $\ell$ is tangent to $(BKP)$ at $T.$ Indeed, $$\measuredangle (\overline{DT},\ell)=\measuredangle QCT=\measuredangle ACT=\measuredangle ABT.$$$\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IAmTheHazard
5001 posts
#23 • 1 Y
Y by cubres
Neat. Let $X=\overline{DP} \cap (ABCD)$. Reim's implies that $BKPX$ and $CLQX$ are cyclic. Now, to show that the two circles are tangent at $X$, it is sufficient to prove that $\measuredangle XBP=\measuredangle XCQ$ reason. This follows by
$$\measuredangle XBP=\measuredangle XBA=\measuredangle XCA=\measuredangle XCQ.~\blacksquare$$
This post has been edited 1 time. Last edited by IAmTheHazard, Aug 12, 2022, 2:06 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8857 posts
#24 • 1 Y
Y by cubres
Let $E = \overline{DP} \cap (ABC)$. I claim that $E$ lies on both $(BKP)$ and $(CLQ)$. This is because $$\measuredangle PKB = \measuredangle DCK = \measuredangle DEB$$and similarly $\measuredangle QLC = \measuredangle DBC = \measuredangle DEC$. Thus it suffices to show that the tangent at $E$ to $(BKP)$ is also tangent to $(CLQ)$, which is equivalent to $\measuredangle EBP = \measuredangle ECQ$. This is evident.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AwesomeYRY
579 posts
#25 • 1 Y
Y by cubres
Let $X = DP\cap \omega$. Then, note that

Claim 1: $X\in (PBK)$
Proof: Angle chase with the following directed angles:
\[\angle PKB = \angle DCB = \angle DAB = \angle DXB = \angle PXB\]
Claim 2: $X\in (QLC)$.
Proof: Angle chase:
\[\angle XQL = \angle XDB = \angle XCB = \angle XCL\]
Thus, $X = (PKB)\cap (QLC)$. Let $\ell_1$ be the tangent to $(PKB)$ at $X$ and $\ell_2$ be the tangent to $(QLC)$ at $X$. Then, we have
\[\angle (\ell_1, XP) = \angle XBP = \angle XBA = \angle XCA = \angle XCQ = \angle (\ell_2, XQ)\]Since $X,P,Q$ are collinear, this means that $\ell_1$ and $\ell_2$ are the same line, which means that $(PKB)$ and $(QLC)$ share a tangent line with the same orientation at $X$, and therefore the two circles are tangent. $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SQTHUSH
154 posts
#26 • 1 Y
Y by cubres
Let $T= \odot(PKB)\cap \odot(ABCD), S=\odot(QLC)\cap \odot(ABCD$
Since $PK//DC\Rightarrow \angle PKB=\angle PTB=\angle DAB$
So $T,P,D$ is collinear
Similarly, $S,Q,D$ is collinear
It shows that$T=S$
Finally,suppose $l_{1},l_{2}$ through point $T$,and tangent to $\odot(PKB)$,$\odot(QLC)$ respectively
$\measuredangle (l_{1},TK) = \angle TDC= \angle TDB+ \angle BDC= \angle LTK+ \angle TCL=\measuredangle (l_{2},TK)\Rightarrow l_{1}=l_{2}$
Which meas that $\odot(PKB)$and $\odot(QLC)$ are tangent.
This post has been edited 2 times. Last edited by SQTHUSH, Mar 20, 2023, 12:28 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SHZhang
109 posts
#28 • 1 Y
Y by cubres
Let $E = (ABCD) \cap DP$. Then \[\angle EPK = \angle EDC = 180^\circ - \angle EBC = \angle EBK,\]so $(EPBK)$ is cyclic. Similarly \[\angle EQL = \angle EDB = \angle ECB = \angle ECL\]gives $(EQCL)$ cyclic.

Now invert at $E$; in the inverted diagram, we have $ABCD$ collinear, $PEQD$ collinear, $(ABEP)$ cyclic, and $(ACQE)$ cyclic. Then $\angle ACQ = 180^\circ - \angle AEQ = \angle AEP = \angle ABP$, so $BP \parallel CQ$. Inverting back gives $(EPB) = (BKP)$ tangent to $(ECQ) = (CLQ)$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
thdnder
194 posts
#29 • 1 Y
Y by cubres
Let $DP$ meets $(ABCD)$ at $T$. Then Reim implies $BKPT$ and $CLQT$ are cyclic. Now by homothety centered $T$, it suffices to show that $\angle TBP = \angle TCQ$, which follows from $\angle TBP = \angle TBA = \angle TCA = \angle TCQ$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathandski
738 posts
#30 • 2 Y
Y by ehuseyinyigit, cubres
All directed angles

Rating (MOHs): 0
Attachments:
This post has been edited 1 time. Last edited by Mathandski, Aug 23, 2024, 9:30 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Saucepan_man02
1322 posts
#31 • 1 Y
Y by cubres
Angle-Chase:

Let $X=DQ \cap (ABC)$. Then: $$\angle XQL = \angle XDB = \angle XCB = \angle XCL \implies X \in (CQL)$$$$\angle PXB = \angle DXB = 180^\circ - \angle DCB = 180^\circ - \angle BKP \implies X \in (BKP).$$Let $T$ be a point on $CD$ such that $TX$ is tangent. Then: $$\angle TXQ=\angle TXP = \angle XBP = \angle XBA = \angle XCA = \angle XCQ$$which implies $XT$ is also tangent to $(CQL)$ and we are done.
This post has been edited 1 time. Last edited by Saucepan_man02, Nov 18, 2024, 6:28 AM
Reason: EDIT
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math004
23 posts
#32 • 1 Y
Y by cubres
Let $X=(DP)\cap (ABCD)$ other than $D.$ $(PK)\parallel CD$ so by Reim's theorem, we have $XPBK$ is cyclic. Similarily, $(QL) \parallel (BD)$ implies, by Reim's theorem, that $(XQCL)$ is cyclic. Thus, it suffices to prove that $\angle XBP=\angle XCQ.$ Indeed,
\[\angle XBP= \angle XBA=\angle XCA=\angle XCQ.\]

[asy]
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -28.672699506166545, xmax = 30.304799479546876, ymin = -13.213124589216047, ymax = 15.349276752032559;  /* image dimensions */
pen ffdxqq = rgb(1,0.8431372549019608,0); pen ffqqtt = rgb(1,0,0.2); pen wwqqcc = rgb(0.4,0,0.8); pen ffzzqq = rgb(1,0.6,0); pen ccffww = rgb(0.8,1,0.4); 

draw(circle((-4.374514807706929,4.554578946863126), 7.441362978795981), linewidth(0.8) + ffdxqq); 
draw(circle((-10.265245927810327,1.1410398077282977), 2.971023698496136), linewidth(0.8) + ffzzqq); 
draw(circle((-7.480815345801481,-3.611376349266896), 8.479064456814383), linewidth(0.8) + ccffww); 
 /* draw figures */
draw((-8.56658899673541,10.702781690419702)--(0.584132797532879,-0.9939070546732326), linewidth(0.8)); 
draw((-8.56658899673541,10.702781690419702)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((2.9926105352026013,3.5060813722090263)--(-8.694970695175076,3.6631852259780002), linewidth(0.8)); 
draw((0.584132797532879,-0.9939070546732326)--(2.9926105352026013,3.5060813722090263), linewidth(0.8) + ffqqtt); 
draw((0.584132797532879,-0.9939070546732326)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((-8.787977427241902,-1.4366839156862143)--(2.9926105352026013,3.5060813722090263), linewidth(0.8) + wwqqcc); 
draw((-15.75661080980647,-1.7659106896656425)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((-15.75661080980647,-1.7659106896656425)--(-2.9993751879215687,3.586625329960073), linewidth(0.8) + wwqqcc); 
draw((-8.694970695175076,3.6631852259780002)--(-11.49291255479232,-1.5644761264366276), linewidth(0.8) + ffqqtt); 
draw((-11.767160966015583,3.7044814464317337)--(-8.787977427241902,-1.4366839156862143), linewidth(0.8)); 
draw((-8.694970695175076,3.6631852259780002)--(-11.767160966015583,3.7044814464317337), linewidth(0.8)); 
 /* dots and labels */
dot((-8.56658899673541,10.702781690419702),linewidth(4pt) + dotstyle); 
label("$A$", (-9.721160237851564,10.678938154341909), NE * labelscalefactor); 
dot((-8.787977427241902,-1.4366839156862143),linewidth(4pt) + dotstyle); 
label("$B$", (-9.25798616204753,-2.5601208457233233), NE * labelscalefactor); 
dot((0.584132797532879,-0.9939070546732326),linewidth(4pt) + dotstyle); 
label("$C$", (0.9704413452915136,-1.9425554113179482), NE * labelscalefactor); 
dot((2.9926105352026013,3.5060813722090263),linewidth(4pt) + dotstyle); 
label("$D$", (3.1319203657103305,3.808522696582109), NE * labelscalefactor); 
dot((-8.694970695175076,3.6631852259780002),linewidth(4pt) + dotstyle); 
label("$P$", (-9.605366718900555,4.117305413784797), NE * labelscalefactor); 
dot((-2.9993751879215687,3.586625329960073),linewidth(4pt) + dotstyle); 
label("$Q$", (-2.850744780091752,3.8857183758827807), NE * labelscalefactor); 
dot((-11.49291255479232,-1.5644761264366276),linewidth(4pt) + dotstyle); 
label("$K$", (-11.419465182466347,-2.6759143646743313), NE * labelscalefactor); 
dot((-15.75661080980647,-1.7659106896656425),linewidth(4pt) + dotstyle); 
label("$L$", (-16.63017353526171,-2.6373165250239956), NE * labelscalefactor); 
dot((-11.767160966015583,3.7044814464317337),linewidth(4pt) + dotstyle); 
label("$X$", (-12.615998211626763,3.847120536232445), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
348 posts
#33 • 1 Y
Y by cubres
Let $E = DP \cap (ABCD)$ that isn't $D.$ By the given conditions, $\angle EBK = \angle EDC = \angle EPK$ and $\angle QEC = \angle DBC = \angle QLC,$ which tells us $BKEP, CLEQ$ are both concyclic. To finish, note that $EBAC$ is concyclic, so $\angle EBP = \angle ECA.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
endless_abyss
41 posts
#34 • 1 Y
Y by cubres
The parallel condition is practically begging us to angle chase.

Claim - The tangency point is none other than the intersection of $P Q$ and the circumcircle of $A B C D$

Note that -
Let $T$ denote the intersection of $P Q$ and the circumcircle of $A B C D$
$\angle B A D = \angle B K P = \angle B T D$
and
$\angle D T C = \angle M L C$

$\square$

:starwars:
Z K Y
N Quick Reply
G
H
=
a