Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
On existence of infinitely many positive integers satisfying
shivangjindal   22
N an hour ago by atdaotlohbh
Source: European Girls' Mathematical Olympiad-2014 - DAY 1 - P3
We denote the number of positive divisors of a positive integer $m$ by $d(m)$ and the number of distinct prime divisors of $m$ by $\omega(m)$. Let $k$ be a positive integer. Prove that there exist infinitely many positive integers $n$ such that $\omega(n) = k$ and $d(n)$ does not divide $d(a^2+b^2)$ for any positive integers $a, b$ satisfying $a + b = n$.
22 replies
shivangjindal
Apr 12, 2014
atdaotlohbh
an hour ago
standard Q FE
jasperE3   3
N 2 hours ago by ErTeeEs06
Source: gghx, p19004309
Find all functions $f:\mathbb Q\to\mathbb Q$ such that for any $x,y\in\mathbb Q$:
$$f(xf(x)+f(x+2y))=f(x)^2+f(y)+y.$$
3 replies
jasperE3
Apr 20, 2025
ErTeeEs06
2 hours ago
Equations
Jackson0423   2
N 2 hours ago by rchokler
Solve the system of equations
\[
\begin{cases}
x - y z = 1,\\[2pt]
y - z x = 2,\\[2pt]
z - x y = 4.
\end{cases}
\]
2 replies
Jackson0423
Today at 4:36 PM
rchokler
2 hours ago
Find all functions
Pirkuliyev Rovsen   2
N 2 hours ago by ErTeeEs06
Source: Cup in memory of A.N. Kolmogorov-2023
Find all functions $f\colon \mathbb{R}\to\mathbb{R}$ such that $f(a-b)f(c-d)+f(a-d)f(b-c){\leq}(a-c)f(b-d)$ for all $a,b,c,d{\in}R$


2 replies
Pirkuliyev Rovsen
Feb 8, 2025
ErTeeEs06
2 hours ago
No more topics!
Let's Invert Some
Shweta_16   8
N Apr 1, 2025 by ihategeo_1969
Source: STEMS 2020 Math Category B/P4 Subjective
In triangle $\triangle{ABC}$ with incenter $I$, the incircle $\omega$ touches sides $AC$ and $AB$ at points $E$ and $F$, respectively. A circle passing through $B$ and $C$ touches $\omega$ at point $K$. The circumcircle of $\triangle{KEC}$ meets $BC$ at $Q \neq C$. Prove that $FQ$ is parallel to $BI$.

Proposed by Anant Mudgal
8 replies
Shweta_16
Jan 26, 2020
ihategeo_1969
Apr 1, 2025
Let's Invert Some
G H J
Source: STEMS 2020 Math Category B/P4 Subjective
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Shweta_16
15 posts
#1 • 4 Y
Y by Smita, mijail, Adventure10, Funcshun840
In triangle $\triangle{ABC}$ with incenter $I$, the incircle $\omega$ touches sides $AC$ and $AB$ at points $E$ and $F$, respectively. A circle passing through $B$ and $C$ touches $\omega$ at point $K$. The circumcircle of $\triangle{KEC}$ meets $BC$ at $Q \neq C$. Prove that $FQ$ is parallel to $BI$.

Proposed by Anant Mudgal
This post has been edited 2 times. Last edited by Shweta_16, Jan 26, 2020, 1:34 PM
Reason: let's chase some angels
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#2 • 5 Y
Y by mueller.25, amar_04, AlastorMoody, sameer_chahar12, Adventure10
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -19.43752933627648, xmax = 32.95131572780579, ymin = -22.91737803351104, ymax = 11.67967094711988;  /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((1.88,-6.82)--(15.2,-6.7), linewidth(0.4) + rvwvcq); 
draw((15.2,-6.7)--(1.948187283488726,4.409082587313549), linewidth(0.4) + rvwvcq); 
draw(circle((5.47643671228076,-3.212986968017347), 3.574467648278019), linewidth(0.4) + dtsfsf); 
draw((1.88,-6.82)--(5.47643671228076,-3.212986968017347), linewidth(0.4) + wvvxds); 
draw(circle((6.747870334297736,-9.23935115462224), 8.825349861185424), linewidth(0.4) + wvvxds); 
draw(circle((8.521543675938103,-4.711348029129539), 6.968250536085029), linewidth(0.4) + sexdts); 
draw((2.2692084696477464,-1.63485327018204)--(1.90203496433293,-3.191281833747048), linewidth(0.4) + wrwrwr); 
draw((1.948187283488726,4.409082587313549)--(11.659998503978759,-16.571322036789724), linewidth(0.4) + wvvxds); 
draw((15.2,-6.7)--(11.659998503978759,-16.571322036789724), linewidth(0.4) + wrwrwr); 
draw((2.2692084696477464,-1.63485327018204)--(7.772785268839476,-0.47371657695024716), linewidth(0.4) + wvvxds); 
draw((7.772785268839476,-0.47371657695024716)--(5.5086378167960826,-6.787309569218054), linewidth(0.4) + wvvxds); 
draw((7.772785268839476,-0.47371657695024716)--(4.336270300841782,-0.7498879530434238), linewidth(0.4) + wrwrwr); 
draw((-1.7486378167960828,-6.852690430781947)--(11.659998503978759,-16.571322036789724), linewidth(0.4)); 
draw((2.2692084696477464,-1.63485327018204)--(-1.7486378167960828,-6.852690430781947), linewidth(0.4)); 
draw((-1.7486378167960828,-6.852690430781947)--(7.772785268839476,-0.47371657695024716), linewidth(0.4)); 
draw((7.772785268839476,-0.47371657695024716)--(11.659998503978759,-16.571322036789724), linewidth(0.4)); 
draw((1.948187283488726,4.409082587313549)--(1.88,-6.82), linewidth(0.4) + rvwvcq); 
draw((2.2692084696477464,-1.63485327018204)--(11.659998503978759,-16.571322036789724), linewidth(0.4) + wvvxds); 
draw((-1.7486378167960828,-6.852690430781947)--(1.88,-6.82), linewidth(0.4) + wrwrwr); 
draw((2.2692084696477464,-1.63485327018204)--(4.336270300841782,-0.7498879530434238), linewidth(0.4) + wrwrwr); 
 /* dots and labels */
dot((1.948187283488726,4.409082587313549),dotstyle); 
label("$A$", (2.0963271088950033,4.739849912657041), NE * labelscalefactor); 
dot((1.88,-6.82),dotstyle); 
label("$B$", (2.0282896477728185,-6.486331172503435), NE * labelscalefactor); 
dot((15.2,-6.7),dotstyle); 
label("$C$", (15.329613297159941,-6.350256250259066), NE * labelscalefactor); 
dot((5.47643671228076,-3.212986968017347),linewidth(4pt) + dotstyle); 
label("$I$", (5.6002563566875185,-2.9483831941498306), NE * labelscalefactor); 
dot((5.5086378167960826,-6.787309569218054),linewidth(4pt) + dotstyle); 
label("$D$", (5.634275087248612,-6.5203499030645276), NE * labelscalefactor); 
dot((7.772785268839476,-0.47371657695024716),linewidth(4pt) + dotstyle); 
label("$E$", (7.913530034841801,-0.19286601870135017), NE * labelscalefactor); 
dot((1.90203496433293,-3.191281833747048),linewidth(4pt) + dotstyle); 
label("$F$", (2.0282896477728185,-2.914364463588738), NE * labelscalefactor); 
dot((-1.7486378167960828,-6.852690430781947),linewidth(4pt) + dotstyle); 
label("$Q$", (-1.6117145222640668,-6.588387364186712), NE * labelscalefactor); 
dot((2.2692084696477464,-1.63485327018204),linewidth(4pt) + dotstyle); 
label("$K$", (2.4024956839448346,-1.34950285777849), NE * labelscalefactor); 
dot((11.659998503978759,-16.571322036789724),linewidth(4pt) + dotstyle); 
label("$I_A$", (11.791665318806333,-16.283725574098032), NE * labelscalefactor); 
dot((4.336270300841782,-0.7498879530434238),linewidth(4pt) + dotstyle); 
label("$L$", (4.47763824817147,-0.465015863190089), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
IMO the title doesnt suit the prob.
Proof: Let $I_A$ be the $A$-excentre. Its well known(ISL 2002 G7) that $K=I_AD \cap \omega$. Now we'll use a phantom approach . Let $\ell$ be the line through $F$ parallel to $BI$. and let $\ell \cap BC=Q'$ We just need to show that $Q' \in \odot(KEG)$. Firstly define $\ell \cap AI=L$. Notice that $\angle LQ'C=\angle IBC=\angle IKC=\angle LKC \implies LQ'I_AC$ cyclic. Now notice that $\Delta FAL \cong \Delta EAL \implies \angle AFL=\angle AEL$. But notice that $\angle AEL=\angle AFL=\angle ABI=\angle LQ'C\implies LEQ'C$ cyclic. This combined with the fact that $LQ'I_AC$ is cyclic $\implies LQ'CI_AE$ is cyclic. So now we just need to show that $K\in \odot(LQ'CI_AE)$ But notice that $\angle I_AEQ'=\angle I_ACQ'=90-\frac{\angle C}{2}$ and $\angle Q'I_AE=\angle Q'CE=\angle C \implies I_AQ=I_AE$. FInally $\angle EKD =\angle CDE=\angle I_ACD=\angle I_AEQ'=\angle I_AQ'E\implies K \in \odot(I_AQ'E)$ as desired. $\blacksquare$
This post has been edited 9 times. Last edited by GeoMetrix, Jan 27, 2020, 6:13 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1980 posts
#3 • 8 Y
Y by Pluto1708, biomathematics, GammaBetaAlpha, amar_04, Sumitrajput0271, DPS, Adventure10, Funcshun840
My problem.

My solution was to apply $\sqrt{DE \cdot DF}$ inversion in contact triangle $\triangle DEF$. It is quite simple from here :)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheDarkPrince
3042 posts
#4 • 2 Y
Y by amar_04, Adventure10
Shweta_16 wrote:
In triangle $\triangle{ABC}$ with incenter $I$, the incircle $\omega$ touches sides $AC$ and $AB$ at points $E$ and $F$, respectively. A circle passing through $B$ and $C$ touches $\omega$ at point $K$. The circumcircle of $\triangle{KEC}$ meets $BC$ at $Q \neq C$. Prove that $FQ$ is parallel to $BI$.

Proposed by Anant Mudgal

Quick sketch:

Let $I_a$ be the A-excenter. We know that $I_a,D,K$ are collinear. Angle chase to show that $I_a$ lies on $\odot(KEC)$. This will gives us that $\angle QKD = \angle DIC$ and also we have $\angle BKD = DKC$.

Now we'll fix $K,D$ and move $C$ linearly. Therefore $B$ and $Q$ move linearly, so just work when $C = D$ and $C$ is point of infinity to get that $BQ = BD = BF$, so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#9 • 4 Y
Y by GeoMetrix, amar_04, Adventure10, Mango247
Here's my solution, which is much more of a "complete the configuration" type, while ignoring $A.$ Nice problem btw.
Shweta_16 wrote:
In triangle $\triangle{ABC}$ with incenter $I$, the incircle $\omega$ touches sides $AC$ and $AB$ at points $E$ and $F$, respectively. A circle passing through $B$ and $C$ touches $\omega$ at point $K$. The circumcircle of $\triangle{KEC}$ meets $BC$ at $Q \neq C$. Prove that $FQ$ is parallel to $BI$.

Proposed by Anant Mudgal
Clearly, it suffices to show $BF=BQ.$ Let $\omega$ be tangent to $BC$ at $D.$ Since $BF=BD,$ hence it suffices to show that $BQ=BD.$ Call the circle through $B,C$ tangent to $\omega$ as $\gamma.$ We now rephrase the problem without $A:$
Rephrased Problem wrote:
Let $\gamma$ be a circle through two points $B,C,$ and let $\omega$ be a circle tangent to $BC, \gamma$ at $D,K$ respectively. Let $CE$ be the second tangent from $C$ to $\omega.$ Assume that $(KEC)$ meets $BC$ again in $Q.$ Show that $BQ=BD.$
Let $M$ be the midpoint of arc $BC$ not containing $K$ in $\gamma.$ By a well known lemma (shooting lemma), $K,D,M$ are collinear. (proof is by homothety taking $\omega$ to $\gamma$). Let $(M,MC)$ be the circle at $M$ with radius $MC.$

We start off by the following key lemma:

Lemma: The points $ED, CM$ meet at $X,$ where $X$ lies on $(M,MC)$
Proof: Let $O$ be the center of $\omega.$ Let $OC \cap ED=N.$ Now consider the inversion about $(M,MC).$ It is not too hard to see that $\omega$ is fixed under this inversion (since it is tangent to $BC, \gamma,$ both of which are swapped under this inversion). Hence $\omega, (M,MC)$ are orthogonal.

Thus, $ON \cdot OC=OD^2$ is the power of $O$ with respect to $(M,MC).$ Hence, $N$ lies on $(M,MC).$ Since $\angle CND=\pi/2,$ hence this implies the lemma. $\square$
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -2.2530674934860158, xmax = 12.86829985259302, ymin = -7.85808355420525, ymax = 1.873062542083283;  /* image dimensions */
pen ccqqqq = rgb(0.8,0,0); 
 /* draw figures */
draw(circle((3.75,-1.2713183099633178), 2.844903690003357), linewidth(0.5)); 
draw((2.1602734445701444,1.0879710924534016)--(3.75,-4.116221999966676), linewidth(0.5)); 
draw((1,-2)--(6.5,-2), linewidth(0.5)); 
draw(circle((3.1035569778469805,-0.3119418900233102), 1.6880581099766898), linewidth(0.5)); 
draw(circle((2.6982215110765106,-2.749451006854822), 3.874944708059339), linewidth(0.5) + linetype("4 4") + ccqqqq); 
draw((-1.1035569778469785,-2)--(1,-2), linewidth(0.5)); 
draw((4.4491329309698795,0.7073546993143952)--(6.5,-2), linewidth(0.5)); 
draw((2.1602734445701444,1.0879710924534016)--(4.4491329309698795,0.7073546993143952), linewidth(0.5)); 
draw(circle((3.75,-4.116221999966676), 3.469999359242442), linewidth(0.5) + blue); 
draw((4.4491329309698795,0.7073546993143952)--(3.75,-4.116221999966676), linewidth(0.5)); 
draw((-1.1035569778469785,-2)--(3.75,-4.116221999966676), linewidth(0.5)); 
draw((6.5,-2)--(1,-6.2324439999333405), linewidth(0.5) + linetype("4 4")); 
draw((4.4491329309698795,0.7073546993143952)--(1,-6.2324439999333405), linewidth(0.5)); 
draw((3.7763449544084273,-0.6463226503428032)--(6.5,-2), linewidth(0.5)); 
draw((3.1035569778469805,-0.3119418900233102)--(3.7763449544084273,-0.6463226503428032), linewidth(0.5)); 
draw((2.1602734445701444,1.0879710924534016)--(6.5,-2), linewidth(0.5)); 
 /* dots and labels */
dot((1,-2),dotstyle); 
label("$B$", (0.6217171730689343,-1.835409677772613), NE * labelscalefactor); 
dot((6.5,-2),dotstyle); 
label("$C$", (6.658764972834329,-2.0797663744297847), NE * labelscalefactor); 
dot((2.1602734445701444,1.0879710924534016),dotstyle); 
label("$K$", (2.00161381301531,1.2837316854395164), NE * labelscalefactor); 
dot((3.75,-4.116221999966676),linewidth(4pt) + dotstyle); 
label("$M$", (3.7121106896155056,-4.408341954339301), NE * labelscalefactor); 
dot((3.10355697784698,-2),linewidth(4pt) + dotstyle); 
label("$D$", (3.252145142966713,-2.252253454423082), NE * labelscalefactor); 
dot((3.1035569778469805,-0.3119418900233102),linewidth(4pt) + dotstyle); 
label("$O$", (2.9502927529784437,-0.124912801172413), NE * labelscalefactor); 
dot((4.4491329309698795,0.7073546993143952),linewidth(4pt) + dotstyle); 
label("$E$", (4.502676472918117,0.8237661387907231), NE * labelscalefactor); 
dot((-1.1035569778469785,-2),linewidth(4pt) + dotstyle); 
label("$Q$", (-1.4337538635178548,-2.0941402977625594), NE * labelscalefactor); 
dot((1,-6.2324439999333405),linewidth(4pt) + dotstyle); 
label("$X$", (0.751082483063907,-6.492560837591645), NE * labelscalefactor); 
dot((3.7763449544084273,-0.6463226503428032),linewidth(4pt) + dotstyle); 
label("$N$", (3.625867149618857,-0.39801734449513404), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Claim: Now, we claim that $X$ also lies on $(KEC).$
Proof: Indeed,
$$\measuredangle KEX=\measuredangle KED=\measuredangle KDB=\text{arc}(BK)+\text{arc}(MC)=\text{arc}(KM)$$(where the last part since $M$ is the arc midpoint.) But also $$\measuredangle KCX=\measuredangle KCM=\text{arc}(KM)$$Hence $\measuredangle KEX=\measuredangle KCX$ giving that $X$ lies on $(KEC).$ $\square$

To finish, see that $\measuredangle XQC=\measuredangle XEC$ by $(KEC).$ But also $\measuredangle XEC=\measuredangle DEC=\measuredangle CDE=\measuredangle QDX$ and so $XQ=XD.$ But $XB \perp BC$ as $X \in (M,MC)$ and so $B$ is the midpoint of $QD.$ $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vivoloh
59 posts
#10 • 2 Y
Y by amar_04, Adventure10
I have a solution which involve inversion about point $K$ and a little bit of lengthy angle chase.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BOBTHEGR8
272 posts
#11 • 1 Y
Y by Adventure10
Shweta_16 wrote:
In triangle $\triangle{ABC}$ with incenter $I$, the incircle $\omega$ touches sides $AC$ and $AB$ at points $E$ and $F$, respectively. A circle passing through $B$ and $C$ touches $\omega$ at point $K$. The circumcircle of $\triangle{KEC}$ meets $BC$ at $Q \neq C$. Prove that $FQ$ is parallel to $BI$.

Proposed by Anant Mudgal

Solution-
Let tangent to $\omega$ at $K$ intersect $BC$ at $T$ and $AC$ at $R$. Let $KE$ intersect $BC$ at $S$.
In $\Delta TRC$ , $ K,E,D$ are the incircle touch points and hence $R(T,C,S,D)=-1 \implies R(D,C,S,T)=1-(-1)=2$
Hence $\frac{DS}{SC}=2\frac{DT}{TC} \implies \frac{DS}{SC}(SD-SC)=2\frac{DT}{TC}(TC-TD)\implies \frac{SD^2}{CS}-DS=2(DT-\frac{TD^2}{CT})$
But $SD^2=SE\cdot SK=SC\cdot SQ \implies \frac{SD^2}{SC}=QS$ and $TD^2=TK^2=TB\cdot TC \implies \frac {TD^2}{CT}=BT$
So we have $QS-DS=2(DT-BT) \implies QD=2BD \implies BQ=BD=BF$ and hence we have $\angle QFD=90 $
But $BI\perp FD \implies BI \parallel QF$
Hence proved !!!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mmathss
282 posts
#12 • 2 Y
Y by GeoMetrix, Adventure10
GeoMetrix wrote:
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -19.43752933627648, xmax = 32.95131572780579, ymin = -22.91737803351104, ymax = 11.67967094711988;  /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen wvvxds = rgb(0.396078431372549,0.3411764705882353,0.8235294117647058); pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((1.88,-6.82)--(15.2,-6.7), linewidth(0.4) + rvwvcq); 
draw((15.2,-6.7)--(1.948187283488726,4.409082587313549), linewidth(0.4) + rvwvcq); 
draw(circle((5.47643671228076,-3.212986968017347), 3.574467648278019), linewidth(0.4) + dtsfsf); 
draw((1.88,-6.82)--(5.47643671228076,-3.212986968017347), linewidth(0.4) + wvvxds); 
draw(circle((6.747870334297736,-9.23935115462224), 8.825349861185424), linewidth(0.4) + wvvxds); 
draw(circle((8.521543675938103,-4.711348029129539), 6.968250536085029), linewidth(0.4) + sexdts); 
draw((2.2692084696477464,-1.63485327018204)--(1.90203496433293,-3.191281833747048), linewidth(0.4) + wrwrwr); 
draw((1.948187283488726,4.409082587313549)--(11.659998503978759,-16.571322036789724), linewidth(0.4) + wvvxds); 
draw((15.2,-6.7)--(11.659998503978759,-16.571322036789724), linewidth(0.4) + wrwrwr); 
draw((2.2692084696477464,-1.63485327018204)--(7.772785268839476,-0.47371657695024716), linewidth(0.4) + wvvxds); 
draw((7.772785268839476,-0.47371657695024716)--(5.5086378167960826,-6.787309569218054), linewidth(0.4) + wvvxds); 
draw((7.772785268839476,-0.47371657695024716)--(4.336270300841782,-0.7498879530434238), linewidth(0.4) + wrwrwr); 
draw((-1.7486378167960828,-6.852690430781947)--(11.659998503978759,-16.571322036789724), linewidth(0.4)); 
draw((2.2692084696477464,-1.63485327018204)--(-1.7486378167960828,-6.852690430781947), linewidth(0.4)); 
draw((-1.7486378167960828,-6.852690430781947)--(7.772785268839476,-0.47371657695024716), linewidth(0.4)); 
draw((7.772785268839476,-0.47371657695024716)--(11.659998503978759,-16.571322036789724), linewidth(0.4)); 
draw((1.948187283488726,4.409082587313549)--(1.88,-6.82), linewidth(0.4) + rvwvcq); 
draw((2.2692084696477464,-1.63485327018204)--(11.659998503978759,-16.571322036789724), linewidth(0.4) + wvvxds); 
draw((-1.7486378167960828,-6.852690430781947)--(1.88,-6.82), linewidth(0.4) + wrwrwr); 
draw((2.2692084696477464,-1.63485327018204)--(4.336270300841782,-0.7498879530434238), linewidth(0.4) + wrwrwr); 
 /* dots and labels */
dot((1.948187283488726,4.409082587313549),dotstyle); 
label("$A$", (2.0963271088950033,4.739849912657041), NE * labelscalefactor); 
dot((1.88,-6.82),dotstyle); 
label("$B$", (2.0282896477728185,-6.486331172503435), NE * labelscalefactor); 
dot((15.2,-6.7),dotstyle); 
label("$C$", (15.329613297159941,-6.350256250259066), NE * labelscalefactor); 
dot((5.47643671228076,-3.212986968017347),linewidth(4pt) + dotstyle); 
label("$I$", (5.6002563566875185,-2.9483831941498306), NE * labelscalefactor); 
dot((5.5086378167960826,-6.787309569218054),linewidth(4pt) + dotstyle); 
label("$D$", (5.634275087248612,-6.5203499030645276), NE * labelscalefactor); 
dot((7.772785268839476,-0.47371657695024716),linewidth(4pt) + dotstyle); 
label("$E$", (7.913530034841801,-0.19286601870135017), NE * labelscalefactor); 
dot((1.90203496433293,-3.191281833747048),linewidth(4pt) + dotstyle); 
label("$F$", (2.0282896477728185,-2.914364463588738), NE * labelscalefactor); 
dot((-1.7486378167960828,-6.852690430781947),linewidth(4pt) + dotstyle); 
label("$Q$", (-1.6117145222640668,-6.588387364186712), NE * labelscalefactor); 
dot((2.2692084696477464,-1.63485327018204),linewidth(4pt) + dotstyle); 
label("$K$", (2.4024956839448346,-1.34950285777849), NE * labelscalefactor); 
dot((11.659998503978759,-16.571322036789724),linewidth(4pt) + dotstyle); 
label("$I_A$", (11.791665318806333,-16.283725574098032), NE * labelscalefactor); 
dot((4.336270300841782,-0.7498879530434238),linewidth(4pt) + dotstyle); 
label("$L$", (4.47763824817147,-0.465015863190089), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
IMO the title doesnt suit the prob.
Proof: Let $I_A$ be the $A$-excentre. Its well known(ISL 2002 G7) that $K=I_AD \cap \omega$. Now we'll use a phantom approach . Let $\ell$ be the line through $F$ parallel to $BI$. and let $\ell \cap BC=Q'$ We just need to show that $Q' \in \odot(KEG)$. Firstly define $\ell \cap AI=L$. Notice that $\angle LQ'C=\angle IBC=\angle IKC=\angle LKC \implies LQ'I_AC$ cyclic. Now notice that $\Delta FAL \cong \Delta EAL \implies \angle AFL=\angle AEL$. But notice that $\angle AEL=\angle AFL=\angle ABI=\angle LQ'C\implies LEQ'C$ cyclic. This combined with the fact that $LQ'I_AC$ is cyclic $\implies LQ'CI_AE$ is cyclic. So now we just need to show that $K\in \odot(LQ'CI_AE)$ But notice that $\angle I_AEQ'=\angle I_ACQ'=90-\frac{\angle C}{2}$ and $\angle Q'I_AE=\angle Q'CE=\angle C \implies I_AQ=I_AE$. FInally $\angle EKD =\angle CDE=\angle I_ACD=\angle I_AEQ'=\angle I_AQ'E\implies K \in \odot(I_AQ'E)$ as desired. $\blacksquare$

Well there was no need of phantom point approach
Here's how you can finish it easily:
$\triangle AEI_A\equiv \triangle AFI_A\Rightarrow I_AE=I_AF\Rightarrow I_A$ is circumcenter of $QFE$.Since $\angle QI_AE=C$ we get $\angle QFE=180-\frac {C}{2}$ and we are done.
This post has been edited 2 times. Last edited by mmathss, Feb 1, 2020, 7:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ihategeo_1969
205 posts
#13
Y by
We will introduce some new points.

$\bullet$ Let $D$ be $A$-intouch point.
$\bullet$ Let $I_A$ be $A$-excenter and $D'$ be midpoint of $\overline{DI_A}$.

Then by IMO Shortlist 2002/G7 and RMM 2012/6, we get $K \in \overline{DI_A}$ (it is the $D$-Why pointof $\triangle DEF$ btw) and $D' \in (BKC)$ respectively.

Claim: $I_A \in (KEC)$.
Proof: Now $\overline{DE} \parallel \overline{I_AC}$ and so \[\measuredangle KI_AC=\measuredangle DI_AC=\measuredangle KDE=\measuredangle KEA=\measuredangle KEC\]And done. $\square$

Now by PoP we get \[DQ \cdot DC=DK \cdot DI_A=2DD' \cdot DK=2DB \cdot DC \iff DQ=2DB\]So we get $B$ is midpoint of $\overline{QD}$ and hence $\frac 12$ homothety at $D$ sends $\overline{QF}$ to $\overline{BI}$ and done.
Z K Y
N Quick Reply
G
H
=
a