Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
IMO 2010 Problem 5
mavropnevma   54
N a few seconds ago by shanelin-sigma
Each of the six boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$, $B_6$ initially contains one coin. The following operations are allowed

Type 1) Choose a non-empty box $B_j$, $1\leq j \leq 5$, remove one coin from $B_j$ and add two coins to $B_{j+1}$;

Type 2) Choose a non-empty box $B_k$, $1\leq k \leq 4$, remove one coin from $B_k$ and swap the contents (maybe empty) of the boxes $B_{k+1}$ and $B_{k+2}$.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$ become empty, while box $B_6$ contains exactly $2010^{2010^{2010}}$ coins.

Proposed by Hans Zantema, Netherlands
54 replies
mavropnevma
Jul 8, 2010
shanelin-sigma
a few seconds ago
3 var inequality
sqing   0
a minute ago
Source: Own
Let $ a,b,c>0 . $ Prove that
$$ \left(1 +\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right )\geq  \frac{8}{3}\left(1+\frac{a+b}{b+c}+ \frac{b+c}{a+b}\right)$$$$ \left(1 +\frac{a^2}{b^2}\right)\left(1+\frac{b^2}{c^2}\right)\left(1+\frac{c^2}{a^2}\right )\geq \frac{8}{3}\left( 1+\frac{a^2+bc}{b^2+ca}+\frac{b^2+ca  }{a^2+bc}\right)$$
0 replies
1 viewing
sqing
a minute ago
0 replies
another problem
kjhgyuio   0
3 minutes ago
........
0 replies
kjhgyuio
3 minutes ago
0 replies
IMO ShortList 1998, geometry problem 5
nttu   32
N 30 minutes ago by lpieleanu
Source: IMO ShortList 1998, geometry problem 5
Let $ABC$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $BC$, let $E$ be the reflection of the point $B$ across the line $CA$, and let $F$ be the reflection of the point $C$ across the line $AB$. Prove that the points $D$, $E$ and $F$ are collinear if and only if $OH=2R$.
32 replies
1 viewing
nttu
Oct 14, 2004
lpieleanu
30 minutes ago
a_n < b_n for large n
tastymath75025   11
N an hour ago by torch
Source: 2017 ELMO Shortlist A1
Let $0<k<\frac{1}{2}$ be a real number and let $a_0, b_0$ be arbitrary real numbers in $(0,1)$. The sequences $(a_n)_{n\ge 0}$ and $(b_n)_{n\ge 0}$ are then defined recursively by

$$a_{n+1} = \dfrac{a_n+1}{2} \text{ and } b_{n+1} = b_n^k$$
for $n\ge 0$. Prove that $a_n<b_n$ for all sufficiently large $n$.

Proposed by Michael Ma
11 replies
tastymath75025
Jul 3, 2017
torch
an hour ago
primes,exponentials,factorials
skellyrah   4
N an hour ago by aaravdodhia
find all primes p,q such that $$ \frac{p^q+q^p-p-q}{p!-q!} $$is a prime number
4 replies
skellyrah
Yesterday at 6:31 PM
aaravdodhia
an hour ago
Special line through antipodal
Phorphyrion   9
N 2 hours ago by ihategeo_1969
Source: 2025 Israel TST Test 1 P2
Triangle $\triangle ABC$ is inscribed in circle $\Omega$. Let $I$ denote its incenter and $I_A$ its $A$-excenter. Let $N$ denote the midpoint of arc $BAC$. Line $NI_A$ meets $\Omega$ a second time at $T$. The perpendicular to $AI$ at $I$ meets sides $AC$ and $AB$ at $E$ and $F$ respectively. The circumcircle of $\triangle BFT$ meets $BI_A$ a second time at $P$, and the circumcircle of $\triangle CET$ meets $CI_A$ a second time at $Q$. Prove that $PQ$ passes through the antipodal to $A$ on $\Omega$.
9 replies
Phorphyrion
Oct 28, 2024
ihategeo_1969
2 hours ago
Triangle form by perpendicular bisector
psi241   50
N 3 hours ago by Ilikeminecraft
Source: IMO Shortlist 2018 G5
Let $ABC$ be a triangle with circumcircle $\Omega$ and incentre $I$. A line $\ell$ intersects the lines $AI$, $BI$, and $CI$ at points $D$, $E$, and $F$, respectively, distinct from the points $A$, $B$, $C$, and $I$. The perpendicular bisectors $x$, $y$, and $z$ of the segments $AD$, $BE$, and $CF$, respectively determine a triangle $\Theta$. Show that the circumcircle of the triangle $\Theta$ is tangent to $\Omega$.
50 replies
psi241
Jul 17, 2019
Ilikeminecraft
3 hours ago
Sequence with infinite primes which we see again and again and again
Assassino9931   3
N 3 hours ago by grupyorum
Source: Balkan MO Shortlist 2024 N6
Let $c$ be a positive integer. Prove that there are infinitely many primes, each of which divides at least one term of the sequence $a_1 = c$, $a_{n+1} = a_n^3 + c$.
3 replies
Assassino9931
Apr 27, 2025
grupyorum
3 hours ago
Integer roots preserved under linear function of polynomial
alifenix-   23
N 3 hours ago by Mathandski
Source: USEMO 2019/2
Let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : \mathbb{Z}[x] \to \mathbb{Z}[x]$ (i.e. functions taking polynomials to polynomials)
such that
[list]
[*] for any polynomials $p, q \in \mathbb{Z}[x]$, $\theta(p + q) = \theta(p) + \theta(q)$;
[*] for any polynomial $p \in \mathbb{Z}[x]$, $p$ has an integer root if and only if $\theta(p)$ does.
[/list]

Carl Schildkraut
23 replies
alifenix-
May 23, 2020
Mathandski
3 hours ago
BMO 2024 SL A3
MuradSafarli   5
N 3 hours ago by Nuran2010

A3.
Find all triples \((a, b, c)\) of positive real numbers that satisfy the system:
\[
\begin{aligned}
11bc - 36b - 15c &= abc \\
12ca - 10c - 28a &= abc \\
13ab - 21a - 6b &= abc.
\end{aligned}
\]
5 replies
MuradSafarli
Apr 27, 2025
Nuran2010
3 hours ago
Cool functional equation
Rayanelba   4
N 3 hours ago by ATM_
Source: Own
Find all functions $f:\mathbb{Z}_{>0}\to \mathbb{Z}_{>0}$ that verify the following equation for all $x,y\in \mathbb{Z}_{>0}$:
$max(f^{f(y)}(x),f^{f(y)}(y))|min(x,y)$
4 replies
Rayanelba
5 hours ago
ATM_
3 hours ago
af(a)+bf(b)+2ab=x^2 for all natural a, b - show that f(a)=a
shoki   26
N 3 hours ago by MathLuis
Source: Iran TST 2011 - Day 4 - Problem 3
Suppose that $f : \mathbb{N} \rightarrow \mathbb{N}$ is a function for which the expression $af(a)+bf(b)+2ab$ for all $a,b \in \mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a \in \mathbb{N}$.
26 replies
shoki
May 14, 2011
MathLuis
3 hours ago
Very easy NT
GreekIdiot   8
N 3 hours ago by vsamc
Prove that there exists no natural number $n>1$ such that $n \mid 2^n-1$.
8 replies
GreekIdiot
Yesterday at 2:49 PM
vsamc
3 hours ago
Heavy config geo involving mixtilinear
Assassino9931   3
N Mar 31, 2025 by africanboy
Source: Bulgaria Spring Mathematical Competition 2025 12.4
Let $ABC$ be an acute-angled triangle \( ABC \) with \( AC > BC \) and incenter \( I \). Let \( \omega \) be the mixtilinear circle at vertex \( C \), i.e. the circle internally tangent to the circumcircle of \( \triangle ABC \) and also tangent to lines \( AC \) and \( BC \). A circle \( \Gamma \) passes through points \( A \) and \( B \) and is tangent to \( \omega \) at point \( T \), with \( C \notin \Gamma \) and \( I \) being inside \( \triangle ATB \). Prove that:
$$\angle CTB + \angle ATI = 180^\circ + \angle BAI - \angle ABI.$$
3 replies
Assassino9931
Mar 30, 2025
africanboy
Mar 31, 2025
Heavy config geo involving mixtilinear
G H J
Source: Bulgaria Spring Mathematical Competition 2025 12.4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1286 posts
#1 • 1 Y
Y by cubres
Let $ABC$ be an acute-angled triangle \( ABC \) with \( AC > BC \) and incenter \( I \). Let \( \omega \) be the mixtilinear circle at vertex \( C \), i.e. the circle internally tangent to the circumcircle of \( \triangle ABC \) and also tangent to lines \( AC \) and \( BC \). A circle \( \Gamma \) passes through points \( A \) and \( B \) and is tangent to \( \omega \) at point \( T \), with \( C \notin \Gamma \) and \( I \) being inside \( \triangle ATB \). Prove that:
$$\angle CTB + \angle ATI = 180^\circ + \angle BAI - \angle ABI.$$
This post has been edited 2 times. Last edited by Assassino9931, Mar 30, 2025, 2:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VicKmath7
1389 posts
#2 • 2 Y
Y by AlexCenteno2007, cubres
Let the mixtilinear incircle touch $CA, CB$ at $E, F$ and $(ABC)$ at $T_c$; let $CI \cap AB, (ABC)=D, M$. It's known that $I$ is the midpoint of $EF$, so $TI$ and $TC$ are isogonal in $\angle ETF$ and thus the angle equality rewrites as $\angle ATE-\angle BTF=\frac{\beta}{2}-\frac{\alpha}{2}$. Due to the tangency we have $\angle ATE=\angle ABT-\angle TFE=\angle ABT-\angle TT_cE$ and similarly $\angle BTF=\angle TAB-\angle TT_cF$. Thus, the angle equality rewrites as $\angle TBA-\angle TAB=\frac{\beta}{2}-\frac{\alpha}{2}+\angle TT_cE-\angle TT_cF$. It's known that $T_cE$ bisects $\angle AT_cC=\beta$ and $T_cF$ bisects $\angle BT_cC=\alpha$, so $$\angle TT_cE-\angle TT_cF=\angle CT_cE+\angle CT_cT-(\angle CT_cF-\angle CT_cT)=\frac{\beta}{2}-\frac{\alpha}{2}+2\angle CT_cT.$$Thus, we need $\angle TBA-\angle TAB=\beta-\alpha+2\angle CT_cT$.

Observe that by radical axes for $(ABC), (ABT), (TEF)$, the tangents at $T, T_c$ to the mixtilinear incircle meet at a point $S$ on $AB$. Let $EF \cap AB=X$, $IT_c \cap AB=U$ and $CT_c \cap EF=V$; it's well-known (follows by Pascal) that $X \in MT_c$ and $IT_c, MT_c$ are internal and external angle bisectors of $\angle AT_cB$. Thus, the circle $UT_cXT$ centered at $S$ is Apollonius circle of $AB$ ($T$ lies on it as $ST_c=ST$). Moreover, $\angle T_cVX=\angle T_cUX=90^{\circ}-\frac{\gamma}{2}+\angle BCT_c$, so $V$ also lies on this Apollonius circle.

Finally, observe that $\angle TSV=2\angle CT_cT$ and $\angle TSA=\angle TBA-\angle TAB$ (as $TX$ is external angle bisector of $\angle ATB$ and $\angle TXA=\frac{\angle TBA-\angle TAB}{2}$), so the angle equality rewrites as $\angle VSA=\beta-\alpha$, or $UV \parallel CI$. But by power of point at $M$ we have that $CDT_cX$ is cyclic, so $\angle UVT_c=\angle UXT_c=\angle DCT_c$, which finishes the problem.

Edit: @2below Yeah I know I overkilled it, but at least it was fun lol. I have done too much config geo, unfortunately.
This post has been edited 2 times. Last edited by VicKmath7, Mar 31, 2025, 3:14 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1286 posts
#3 • 3 Y
Y by ehuseyinyigit, VicKmath7, cubres
problem gives me vibe
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
africanboy
6 posts
#4 • 4 Y
Y by VicKmath7, Assassino9931, bo18, cubres
Too easy for 12.4.

Let \(CT \) intersect \( \omega \) at \(J \) and let the mixtilinear incircle touch \(CA, CB \) at \(D, E \), respectively . It's known that \(I \) is the midpoint of \(EF \). Also it's clear that \(DJET \) is harmonic.

\( \angle CTB + \angle ATI = \angle TAB + \angle TEJ + \angle ATI = \angle TAI + \frac{\alpha}{2} + \angle TEJ + \angle ATI = 180^\circ - \angle AIT + \frac{\alpha}{2} + \angle TEJ = 180^\circ - \angle AID - \angle DIT + \frac{\alpha}{2} + \angle TEJ = 180^\circ - \frac{\beta}{2} + \frac{\alpha}{2} = 180^\circ + \angle BAI - \angle ABI \)

We used that \( \angle AID = \angle IDC - \angle CAI = \frac{\alpha}{2} + \frac{\beta}{2} - \frac{\alpha}{2} = \frac{\beta}{2} \).
We also used the well-known property of the harmonic quadrilateral \(DJET \) , which states that \( \angle DIT = \angle TEJ \).
Z K Y
N Quick Reply
G
H
=
a