Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Easy function in turkey TST
egxa   9
N 9 minutes ago by Levieee
Source: 2024 Turkey TST P2
Find all $f:\mathbb{R}\to\mathbb{R}$ functions such that
$$f(x+y)^3=(x+2y)f(x^2)+f(f(y))(x^2+3xy+y^2)$$for all real numbers $x,y$
9 replies
egxa
Mar 18, 2024
Levieee
9 minutes ago
2023 Iran MO 2nd round P6
Amiralizakeri2007   3
N 18 minutes ago by iliya8788
Source: 2023 Iran MO
6. Circles $W_{1}$ and $W_{2}$ with equal radii are given. Let $P$,$Q$ be the intersection of the circles.
points $B$ and $C$ are on $W_{1}$ and $W_{2}$ such that they are inside $W_{2}$ and $W_{1}$ respectively.
Points $X$,$Y$ $\neq$ $P$ are on $W_{1}$ and $W_{2}$ respectively, such that $\angle{BPQ}=\angle{BYQ}$ and $\angle{CPQ}=\angle{CXQ}$.Denote by $S$ as the other intersection of $(YPB)$ and $(XPC)$. Prove that $QS,BC,XY$ are concurrent.
3 replies
+1 w
Amiralizakeri2007
May 17, 2023
iliya8788
18 minutes ago
i love mordell
MR.1   6
N 36 minutes ago by epl1
Source: own
find all pairs of $(m,n)$ such that $n^2-79=m^3$
6 replies
MR.1
Apr 10, 2025
epl1
36 minutes ago
Abelkonkurransen 2025 1b
Lil_flip38   1
N 36 minutes ago by MathLuis
Source: abelkonkurransen
In Duckville there is a perpetual trophy with the words “Best child of Duckville” engraved on it. Each inhabitant of Duckville has a non-empty list (which never changes) of other inhabitants of Duckville. Whoever receives the trophy
gets to keep it for one day, and then passes it on to someone on their list the next day. Gregers has previously received the trophy. It turns out that each time he does receive it, he is guaranteed to receive it again exactly $2025$ days later (but perhaps earlier, as well). Hedvig received the trophy today. Determine all integers $n>0$ for which we can be absolutely certain that she cannot receive the trophy again in $n$ days, given the above information.
1 reply
Lil_flip38
Mar 20, 2025
MathLuis
36 minutes ago
No more topics!
Cute orthocenter geometry
MarkBcc168   77
N Mar 29, 2025 by ErTeeEs06
Source: ELMO 2020 P4
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.

Proposed by Daniel Hu.
77 replies
MarkBcc168
Jul 28, 2020
ErTeeEs06
Mar 29, 2025
Cute orthocenter geometry
G H J
G H BBookmark kLocked kLocked NReply
Source: ELMO 2020 P4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MarkBcc168
1594 posts
#1 • 7 Y
Y by KKSingla2003, Amir Hossein, mira74, giveandtake, centslordm, brickmaster8, Rounak_iitr
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.

Proposed by Daniel Hu.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#2 • 4 Y
Y by amar_04, centslordm, brickmaster8, PRMOisTheHardestExam
Let $O$ denote the circumcenter of $\triangle{BHC}$ and let $E$ denote the circumcenter of $\triangle{AHP}$. We begin with a crucial claim.

Claim: If $H'$ is the antipode of $H$ w.r.t $\odot(BHC)$ then $\overline{AM} \cap \overline{PG}=H'$

Proof: Let $H_A$ denote the $A$ -humpty point. Then notice that $$\angle HH_AH'=\angle HH_AM=90^\circ$$and hence $H' \in \overline{AM}$. Now just note that $$\angle HGH'+\angle HGP=180^\circ$$and so $H' \in \overline{PG}$ $\qquad \blacksquare$

Now notice that its well known that $H'$ is the reflection of $A$ in $M$ (just angle chase) Also clearly $\overline{AP} \parallel \overline{BC}$ and hence we have that $\overline{AM}=\tfrac{1}{2}\overline{AP}$. But notice that clearly if $X=\overline{MH} \cap \overline{AP}$ then $X$ Is the midpoint of $\overline{AP}$ and hence we get that $MXPF$ is a parallelogram which implies that $\overline{MH} \parallel \overline{PG}$ with which we are done $\qquad \blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Omega18
161 posts
#3 • 7 Y
Y by zephyr7723, Amir Hossein, indulged, Braman, thedragon01, PRMOisTheHardestExam, Mathlover_1
[asy] 
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(25.15639756385678cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -14.693141418188027, xmax = 10.463256145668753, ymin = -10.172937052451232, ymax = -0.3526248182641615;  /* image dimensions */
pen qqttcc = rgb(0.,0.2,0.8); 
 /* draw figures */
draw((-2.685950600670045,-2.6026295254967415)--(-3.624326490091042,-5.644785490957004), linewidth(0.8)); 
draw((-3.624326490091042,-5.644785490957004)--(0.33825647657857444,-5.690281506463871), linewidth(0.8)); 
draw((0.33825647657857444,-5.690281506463871)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
draw(circle((-1.63070852463975,-4.593929414274443), 2.2536217708548194), linewidth(0.8)); 
draw(circle((-1.655361488872718,-6.741137583146432), 2.253621770854819), linewidth(0.8)); 
draw(circle((-5.254956026365177,-3.6468793463522564), 2.77312938133218), linewidth(0.8)); 
draw((-7.799308487827341,-2.543920998335784)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
draw((-1.6430350067562338,-5.667533498710437)--(-5.242629544248693,-2.5732752619162627), linewidth(0.8) + qqttcc); 
draw((-0.6001194128424232,-8.732437471924131)--(-7.799308487827341,-2.543920998335784), linewidth(0.8) + qqttcc); 
draw((-0.6001194128424232,-8.732437471924131)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
draw((-0.5650721123368723,-5.67991002608484)--(-7.799308487827341,-2.543920998335784), linewidth(0.8)); 
draw((-2.720997901175595,-5.655156971336034)--(-2.685950600670045,-2.6026295254967415), linewidth(0.8)); 
 /* dots and labels */
dot((-2.685950600670045,-2.6026295254967415),linewidth(2.pt) + dotstyle); 
label("$A$", (-2.6739736932342324,-2.4396740976359865), NE * labelscalefactor); 
dot((-3.624326490091042,-5.644785490957004),linewidth(2.pt) + dotstyle); 
label("$B$", (-3.885207650012522,-5.551613648127904), NE * labelscalefactor); 
dot((0.33825647657857444,-5.690281506463871),linewidth(2.pt) + dotstyle); 
label("$C$", (0.38206275156022085,-5.6261511223911835), NE * labelscalefactor); 
dot((-2.710603564903013,-4.749837694368731),linewidth(2.pt) + dotstyle); 
label("$H$", (-2.6367049561025926,-4.675798325534371), NE * labelscalefactor); 
dot((-2.720997901175595,-5.655156971336034),linewidth(2.pt) + dotstyle); 
label("$D$", (-2.6553393246684127,-5.588882385259544), NE * labelscalefactor); 
dot((-1.6430350067562338,-5.667533498710437),linewidth(2.pt) + dotstyle); 
label("$M$", (-1.574545947850862,-5.588882385259544), NE * labelscalefactor); 
dot((-0.5650721123368723,-5.67991002608484),linewidth(2.pt) + dotstyle); 
label("$D'$", (-0.4937525710333115,-5.607516753825364), NE * labelscalefactor); 
dot((-7.799308487827341,-2.543920998335784),linewidth(2.pt) + dotstyle); 
label("$P$", (-7.910231260229606,-2.4396740976359865), NE * labelscalefactor); 
dot((-3.782515686424972,-5.996808283772401),linewidth(2.pt) + dotstyle); 
label("$G$", (-4.220626284197279,-6.0920103365366804), NE * labelscalefactor); 
dot((-5.242629544248693,-2.5732752619162627),linewidth(2.pt) + dotstyle); 
label("$T$", (-5.1709790810540905,-2.4955772033334465), NE * labelscalefactor); 
dot((-0.6001194128424232,-8.732437471924131),linewidth(2.pt) + dotstyle); 
label("$Z$", (-0.549655676730771,-8.551746987224902), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Let $ T = HM \cap AP $
Now $ \triangle AHP \sim \triangle DHD' $, consider the homothety $\Omega$ centered at $H$ that maps $ DD' \mapsto AP $
Then $ \Omega : M \mapsto T $. Now as $M$ is midpoint of $DD' \Rightarrow \boxed{ T \mbox{ is midpoint of } AP } $

Now it is well known that $ ( BHC ) := $ reflection of $(ABC)$ about $BC$
Let $ AM \cap ( BHC ) = Z $, then $ Z$ is reflection of $A$ about $M$.
Thus, we have $ \boxed{ M \mbox{ is midpoint of } AZ }$

Hence by midpoint theorem $ \boxed{ MT \parallel PZ }$

Claim : $ G,P,Z $ are collinear.
Let $ \measuredangle := $ directed angle mod $ 180^{\circ} $
Now $B,C,Z,G$ are concyclic and $ ABZC $ is a parallelogram thus
$$ \measuredangle BGZ = \measuredangle BCZ = \measuredangle CBA $$Also $ \measuredangle PGB + \measuredangle BGH = \measuredangle PGH = \measuredangle PAH = 90^{\circ} $
\begin{align*} \Rightarrow \measuredangle PGB & = 90^{\circ} - \measuredangle BGH \\ & = 90^{\circ} - \measuredangle BCH \\ & = \measuredangle ABC \\ & = - \measuredangle BGZ \end{align*}
$\therefore \measuredangle BGP = \measuredangle BGZ $
Thus we get $\boxed{ G,P,Z \mbox{ are collinear. } } $
Hence $ PG \parallel HM $
$ \Rightarrow \measuredangle MHG = \measuredangle PGH = \measuredangle PAH = 90^{\circ} $
Hence, proved.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lilavati_2005
357 posts
#4 • 1 Y
Y by char2539
https://i.imgur.com/SmTjWZo.png
Introduce the following points :
$O_1$ is the center of $\odot(ABC)$
$O_2$ is the center of $\odot(HBC)$
$O_3$ is the center of $\odot(AHP)$
$O_4$ is the center of $\odot(HDD')$

We know that $O_3$ and $O_4$ are the midpoints of $PH$ and $HD'$ respectively.

Lemma(Well Known)
Proof

By Lemma $O_2$ is the reflection of $O_1$ over $BC$.

Since $M$ is the midpoint of $DD'$ and $O_1O_2 \perp DD',O_1, O_4, O_2$ are collinear.
$O_2O_3 \perp GH$ since $GH$ is the radical axis of $\odot(AHP)$ and $\odot(BHC)$
Hence it suffices to show that $MH \parallel O_2O_3$

$AP \parallel BC \Longrightarrow \frac{DH \div 2}{HP \div 2} = \frac{O_4H}{HO_3} = \frac{D'H}{HP} = \frac{AH}{HD}$

$O_4M = HD \div 2$ since $O_4M$ is the $D'$ midline wrt $\triangle D'HD$
$O_2M =O_1M = O_1B \cos A = AH \div 2$
The last equality above follows from LOS in $\triangle AHB$.

Hence, $\frac{O_4H}{HO_3} = \frac{O_4M}{MO_2} \Longrightarrow MH \parallel O_2O_3$
This post has been edited 1 time. Last edited by lilavati_2005, Jul 28, 2020, 7:56 AM
Reason: added a diagram
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Severus
742 posts
#5 • 1 Y
Y by Imayormaynotknowcalculus
A four page coordinate bash also does the trick.

Sketch
This post has been edited 1 time. Last edited by Severus, Jul 28, 2020, 12:45 PM
Reason: added sketch
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#6 • 8 Y
Y by Mathasocean, Amir Hossein, Muaaz.SY, Siddharth03, SSaad, PRMOisTheHardestExam, vrondoS, Radin.AmirAslani
[asy]
size(8cm);
defaultpen(fontsize(10pt));

pair A = dir(105), B = dir(210), C = dir(330), H = orthocenter(A,B,C), D = foot(A,B,C), M = (B+C)/2, R = dir(75), D1 = 2M-D, A1 = 2M-H, Q = 2*D1-R, P = extension(A,R,H,D1), G = foot(H,P,Q);

draw(unitcircle^^circumcircle(H,G,Q));
draw(B--C^^A--P--Q--R--A--D^^A1--H--D1^^P--H--G);

dot("$A$", A, dir(95));
dot("$B$", B, dir(180));
dot("$C$", C, dir(0));
dot("$H$", H, dir(50));
dot("$D$", D, dir(270));
dot("$M$", M, dir(240));
dot("$D'$", D1, dir(315));
dot("$A'$", A1, dir(320));
dot("$P$", P, dir(150));
dot("$G$", G, dir(180));
dot("$Q$", Q, dir(285));
dot("$R$", R, dir(75));
[/asy]
Let $A'$ be the antipode of $A$ on $(ABC)$, $R$ be the point on $(ABC)$ such that $\overline{AR} \parallel \overline{BC}$, and $Q$ be the reflection of $A$ over $M$. It is well known that $M$ is the midpoint of $\overline{A'H}$, so by symmetry $Q$ is the antipode of $H$ on $(BHC)$, and $R$, $D'$, $A'$, $Q$ are collinear with $D$ the midpoint of $\overline{RQ}$.

We can redefine $G \ne Q = \overline{PQ} \cap (BHC)$, and it suffices to prove $\overline{HA'} \parallel \overline{PQ}$. But this is immediate from $$\dfrac{D'A'}{D'H} = \dfrac{DH}{D'H} = \dfrac{D'R}{D'P} = \dfrac{D'Q}{D'P}.$$$\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Idio-logy
206 posts
#7 • 1 Y
Y by Nathanisme
Solution
This post has been edited 1 time. Last edited by Idio-logy, Jul 28, 2020, 8:05 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathematicsislovely
245 posts
#8
Y by
In the following solution $(XYZ)$ denote the circumcircle of $XYZ$.

Let $AH$ cut $(BHC)$ again at $X$.Let perpendicular on $BC$ at $D'$ cut $(BHC)$ at $R$ and $Y$ where $R,H$ lies same side on $BC$.As the perpendicular line on $BC$ at $D$ and $D'$ are symmetric about the diametre of $(BHC)$ passing through $M$, so $HRYX$;$HRD'D$;$D'DXY$ are rectangle.

$\textcolor{blue}{CLAIM1:}$$P,G,Y$ are collinear.
$\textcolor{red}{Proof:}$ Let $PG$ cut $(BHC)$ again at $Y'$.As $G,H$ are common point of $(BHC)$ and $(PAH)$ and $AH\cap (BHC)= X$,so by Reim's theorem $AP||XY'$.On the other hand $XY|| DD'||AP$ and $Y$ lies on $(BHC)$.So $Y'\equiv Y$.$\square$

Now as $PAHG$ is concyclic so $\angle PGH=180^{\circ}-\angle PAH=90^{\circ}$.So it is enough to show that $PG||HM$ which will prove that $90^{\circ}=\angle PGH=\angle MHG$.

We will prove that $PY||HM$

Let the perpendicular line on $BC$ at $D'$ cut $PA$ at $S$.Also let $MH\cap PS=Q$ and $HM\cap YS=V$

$\textcolor{blue}{CLAIM2:}$ $D'S=D'Y$
$\textcolor{red}{Proof:}$ Let $X'$ be the reflection of $A$ over $BC$.Then $\angle BXC=\angle BAC=180^{\circ}-\angle BHC$ So $B,H,C,X'$ are concyclic.So $X'\equiv X$
Now as $ASD'D$ and $DD'YX$ are rectangle so
$SD'=AD=DX=D'Y$.$\square$

$\textcolor{blue}{CLAIM3:}$ $RD'=D'V$
$\textcolor{red}{Proof:}$$DH||D'V$ and $M= HV\cap DD'$ is the midpoint of $DD'$.SO $DHD'V$ is a parallegram.So $HD=D'V$.But since $HDD'R$ is rectangle $HD=RD'$$\square$

$\textcolor{blue}{CLAIM4:}$ $QV||PY$.
$\textcolor{red}{Proof:}$ On one hand we have,
$\frac{SY}{SP}=2\frac {SD'}{SP}=2\frac{RD'}{RG}$.[The first equality by $D'$=midpoint of $SY$]
On the other hand ,
$\frac{SV}{SQ}=\frac{RV}{RH}=2\frac{RD'}{RH}$[AS,$D'$ is the midpoint of $RV$]

SO $\frac{SY}{SP}=\frac{SV}{SQ}$ which implies
$PY||QV$.So $PG||HM$.SO $\angle MHG=90^{\circ}$$\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
srijonrick
168 posts
#9 • 3 Y
Y by Aritra12, Amir Hossein, A-Thought-Of-God
MarkBcc168 wrote:
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.

Proposed by Daniel Hu.

Another $MH$ line configuration! :)

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -12.7655891980115, xmax = 9.257249900918303, ymin = -8.548927726358093, ymax = 5.1113621322226335;  /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0); pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); pen ccqqqq = rgb(0.8,0,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); 

draw((-3.394872238111926,2.523862673503301)--(-5.9650112473135035,-4.858490859924286)--(7.0349887526864965,-4.858490859924286)--cycle, linewidth(0.8) + zzttqq); 
draw((-5.9650112473135035,-4.858490859924286)--(-3.394872238111926,-1.2273734294705232)--(7.0349887526864965,-4.858490859924286)--cycle, linewidth(0.8) + ffvvqq); 
draw((-5.264643222971541,-3.250976410057223)--(-3.394872238111926,-1.2273734294705232)--(0.5349887526864965,-4.858490859924286)--cycle, linewidth(1.2) + fuqqzz); 
 /* draw figures */
draw((-3.394872238111926,2.523862673503301)--(-5.9650112473135035,-4.858490859924286), linewidth(0.8) + zzttqq); 
draw((-5.9650112473135035,-4.858490859924286)--(7.0349887526864965,-4.858490859924286), linewidth(0.8) + zzttqq); 
draw((7.0349887526864965,-4.858490859924286)--(-3.394872238111926,2.523862673503301), linewidth(0.8) + zzttqq); 
draw((-3.394872238111926,2.523862673503301)--(-3.394872238111926,-4.858490859924286), linewidth(0.8) + blue); 
draw((4.464849743484919,-4.858490859924286)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8)); 
draw((xmin, 0*xmin + 2.5238626735033014)--(xmax, 0*xmax + 2.5238626735033014), linewidth(0.8) + zzttqq); /* line */
draw((-11.514596653914866,2.5238626735033014)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8)); 
draw(circle((-7.454734446013396,0.6482446220163888), 4.472183384233048), linewidth(0.8) + zzttff); 
draw(circle((0.5349887526864965,-6.7341089114112), 6.765200889483147), linewidth(0.8) + blue); 
draw((-5.9650112473135035,-4.858490859924286)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8) + ffvvqq); 
draw((-3.394872238111926,-1.2273734294705232)--(7.0349887526864965,-4.858490859924286), linewidth(0.8) + ffvvqq); 
draw((7.0349887526864965,-4.858490859924286)--(-5.9650112473135035,-4.858490859924286), linewidth(0.8) + ffvvqq); 
draw((-7.454734446013397,0.6482446220163874)--(0.5349887526864965,-6.734108911411201), linewidth(0.8) + ccqqqq); 
draw((-5.264643222971541,-3.250976410057223)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8) + fuqqzz); 
draw((-3.394872238111926,-1.2273734294705232)--(0.5349887526864965,-4.858490859924286), linewidth(0.8) + fuqqzz); 
draw((0.5349887526864965,-4.858490859924286)--(-5.264643222971541,-3.250976410057223), linewidth(0.8) + fuqqzz); 
draw((0.5349887526864956,-2.9828728084373735)--(0.5349887526864965,-6.734108911411201), linewidth(1.2)); 
draw((-7.454734446013397,2.5238626735033014)--(-7.454734446013397,0.6482446220163874), linewidth(0.8)); 
draw((-7.454734446013397,2.5238626735033014)--(-3.394872238111926,-1.2273734294705232), linewidth(0.8) + fuqqzz); 
 /* dots and labels */
dot((-3.394872238111926,2.523862673503301),linewidth(4pt) + dotstyle); 
label("$A$", (-3.3084654497633146,2.7032982148446205), NE * labelscalefactor); 
dot((-5.9650112473135035,-4.858490859924286),linewidth(4pt) + dotstyle); 
label("$B$", (-5.869769798247198,-4.6741339683952905), NE * labelscalefactor); 
dot((7.0349887526864965,-4.858490859924286),linewidth(4pt) + dotstyle); 
label("$C$", (7.111883865436075,-4.6741339683952905), NE * labelscalefactor); 
dot((-3.394872238111926,-1.2273734294705232),linewidth(3pt) + dotstyle); 
label("$H$", (-3.3084654497633146,-1.1058210726442357), NE * labelscalefactor); 
dot((-3.394872238111926,-4.858490859924286),linewidth(3pt) + dotstyle); 
label("$D$", (-3.3084654497633146,-4.717916948711254), NE * labelscalefactor); 
dot((0.5349887526864965,-4.858490859924286),linewidth(3pt) + dotstyle); 
label("$M$", (0.6320027786734296,-4.717916948711254), NE * labelscalefactor); 
dot((4.464849743484919,-4.858490859924286),linewidth(3pt) + dotstyle); 
label("$D'$", (4.550579516952192,-4.717916948711254), NE * labelscalefactor); 
dot((-11.514596653914866,2.5238626735033014),linewidth(3pt) + dotstyle); 
label("$P$", (-11.49588276884855,1.9808790396312168), NE * labelscalefactor); 
dot((-5.264643222971541,-3.250976410057223),linewidth(3pt) + dotstyle); 
label("$G$", (-5.760312347457289,-3.64523393097014), NE * labelscalefactor); 
dot((-7.454734446013397,0.6482446220163874),linewidth(3pt) + dotstyle); 
label("$X$", (-7.358391128989968,0.7768470809422106), NE * labelscalefactor); 
dot((0.5349887526864965,-6.734108911411201),linewidth(3pt) + dotstyle); 
label("$O'$", (0.6320027786734296,-6.600585102297701), NE * labelscalefactor); 
dot((0.5349887526864956,-2.9828728084373735),linewidth(3pt) + dotstyle); 
label("$O$", (0.52254532788352,-2.879031775440772), NE * labelscalefactor); 
dot((-2.3648272351425224,-4.054733634990755),linewidth(3pt) + dotstyle); 
label("$E$", (-2.695503725339821,-4.411436086499507), NE * labelscalefactor); 
dot((-7.454734446013397,2.5238626735033014),linewidth(3pt) + dotstyle); 
label("$F$", (-7.358391128989968,2.659515234528657), NE * labelscalefactor); 
dot((-4.329757730541734,-2.2391749197638733),linewidth(3pt) + dotstyle); 
label("$L$", (-4.2497995265565365,-2.1128296199114045), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */[/asy]

Claim 1: $\overline{MH}$ passes through the midpoint of $AP.$
Proof

Now, let us denote the centers of $\odot(APH)$ and $\odot(ABC)$ by $X$ and $O$ respectively. Also, we note $X$ is the midpoint of $PH$, since $\triangle APH$ is right-angled at $A$.

Claim 2: $O'$, the reflection of $O$ over $BC$ is the circumcenter of $\triangle BHC.$
Proof

Now, let us denote the midpoint of $GH$ by $L$. Since $\overline{GH}$ is the radical axis of $\odot(APH)$ and $\odot(BHC)$, so $\overline{O'X}$ must pass through $L$ and $\overline{O'X} \perp \overline{GH}.$

Next, in $\triangle APH$, we have $XF \parallel AH$ and $XF = \frac{AH}{2}$ by Midpoint theorem. Also, we have $O'M \parallel AH$ and $O'M = \frac{AH}{2}.$

Hence, $XFMO'$ is a parallelogram. So, $XO' \parallel FM\implies \angle GLO' = \angle GHM.$ By Radical Axis theorem, $\angle GLO' = 90^{\circ} \implies \angle MHG = 90^{\circ}. \quad\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kimchiks926
256 posts
#10 • 2 Y
Y by Amir Hossein, mkomisarova
Let $O$ denote the circumcenter of $\odot(ABC)$ and $O'$ the circumcenter of $\odot(BHC)$. It is well - known that $\odot(BHC)$ is reflection of $\odot(ABC)$ over $BC$, therefore $O'$ is reflection of $O$ over the midpoint of $BC$. Let $J$ denote the midpoint of $HP$, which is obviously the center of $\odot(AHP)$.

Claim: $HM \parallel JO'$
Proof: Assume that $OO'$ intersects $HD'$ at point $K$. Clearly $KM$ is the midline in $\triangle HDD'$. It is well - known that $AH=OO'$ (this can be simply proved using complex numbers). Also note that $\triangle APH \sim \triangle DD'H$. Therefore:
$$ \frac{PH}{HD'}=\frac{2JH}{2HK} =\frac{AH}{HD}=\frac{OO'}{HD}=\frac{2MO'}{2KM}$$As a result:
$$\frac{JH}{HK}=\frac{O'M}{MK} $$This implies that $HM \parallel JO'$ as desired.

Now to finish note that $GH$ is radical axis of $\odot(BHC)$ and $\odot(AHP)$. Therefore $GH \perp JO'$. Since $HM \parallel JO'$, we conclude that $GH \perp HM $, which implies that $\angle MHG=90$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Steve12345
618 posts
#11 • 1 Y
Y by ehuseyinyigit
The $A-Queue$ point is the orthocenter of triangle $APG$. The problem statement follows easily from this fact.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Googolplexian
56 posts
#12 • 3 Y
Y by Amir Hossein, ihatemath123, Mango247
I didn't find a synthetic solution until after the time, so I will write the (fairly horrible) barybash I did (I am sorry).

We use Barycentric coordintates wrt triangle $ABC$.
Use Conway's Notation: $S_A=\frac {b^2+c^2-a^2}{2}, S_B= \frac {a^2+c^2-b^2}{2}, S_C= \frac {a^2+b^2-c^2}{2}$, and let $S_{AB}=S_AS_B$ and $S$ be twice the area of triange ABC.
We have $B=(0, 1, 0), C=(0, 0, 1), H=(S_{BC} : S_{CA} : S_{AB})$.
Let circle $BHC$ have equation $-a^2yz-b^2zx-c^2xy+(ux+vy+wz)(x+y+z)=0$
From points $B$ and $C$, we get $v=0, w=0$ respectively, and then using $H$, we obtain $$-S_AS_BS_C(a^2S_A+b^2S_B+c^2S_C)+uS_BS_C(S_{BC}+S_{CA}+S_{AB})=0$$Now $S_B+S_C=a^2$, with cyclic varations, and so it follows that $\frac{1}{2} \cdot (a^2S_A+b^2S_B+c^2S_C)=S_{BC}+S_{CA}+S_{AB}$, (and also by the Conway identites, both are equal to $S^2$) and we get $u=2S_A$.

Since $H=(S_{BC} : S_{CA} : S_{AB}), D(0: S_{CA} : S_{AB})=(0: S_C: S_B)$, meaning $D'=(0: S_B: S_C)$.

Let $D'H$ have equation $ux+vy+wz$=0. By using $D'$ and $H$, we can find the ratio $u: v: w$ and find that the line has equation $S_A(S_C^2-S_B^2)x-S_BS_C^2y+S_B^2S_Cz=0$.

The equation of $BC$ is $x=0$, so the point at infinity on $BC$ is $(0: -1: 1)$.
Since $AP$ is parallel to $BC$, it meets it at $(0: -1: 1)$. Additionally using $A=(1, 0, 0)$, we find that $AP$ has equation $y+z=0$

P is the intersection of $S_A(S_C^2-S_B^2)x-S_BS_C^2y+S_B^2S_Cz=0$ and $y+z=0$ and we can solve this to find that $P=(-S_{BC} : S_A(S_B-S_C): S_A(S_C-S_B))$

Let circle $AHP$ have equation $-a^2yz-b^2zx-c^2xy+(ux+vy+wz)(x+y+z)=0$
Using $A=(1, 0, 0)$ gives $u=0$. Using $H=(S_{BC} : S_{CA} : S_{AB})$ and the identity $\frac{1}{2} \cdot (a^2S_A+b^2S_B+c^2S_C)=S_{BC}+S_{CA}+S_{AB}$ gives $S_Cv+S_Bw=0$.
Using $P=(-S_{BC} : S_A(S_B-S_C): S_A(S_C-S_B))$, we get (after some simplifications) that $v-w=\frac{a^2S_A(S_B-S_C)}{S_{BC}}+c^2-b^2$.
We can solve these equations to find that $v=\frac{S_AS_B}{S_C}-S_A+S_B$ and $w=S_C-S_A+\frac{S_AS_C}{S_B}$.

We have that circle $BHC$ is $$-a^2yz-b^2zx-c^2xy+2S_A(x+y+z)=0$$and that cirlce $AHP$ is $$-a^2yz-b^2zx-c^2xy+((\frac{S_AS_B}{S_C}-S_A+S_B)y+(S_C-S_A+\frac{S_AS_C}{S_B})z))(x+y+z)=0$$.

These circles meet at $H$ and $G$, so we have that $GH$ is their radical axis.

By the Barycentric Radical Axis theorem the two circles $-a^2yz-b^2zx-c^2xy+(u_1x+v_1y+w_1z)(x+y+z)=0, -a^2yz-b^2zx-c^2xy+(u_2x+v_2y+w_2z)(x+y+z)=0$ have radical axis $(u_1-u_2)x+(v_1-v_2)y+(w_1-w_2)z=0$
So GH is $$2S_Ax+(S_A-S_B-\frac{S_AS_B}{S_C})y+(S_A-S_C-\frac{S_AS_C}{S_B})z=0$$which we write as $$2S_AS_BS_Cx+(S_AS_BS_C-S_B^2S_C-S_AS_B^2)y+(S_AS_BS_C-S_BS_C^2-S_AS_C^2)z=0$$
Choose the point $P'$ on this with $x=0$. We find $P'=(0 : S_AS_C^2+S_BS_C^2-S_AS_BS_C : S_AS_BS_C-S_B^2S_C-S_AS_B^2)$ $$=(0 , \frac{S_AS_C^2+S_BS_C^2-S_AS_BS_C}{(S_A+S_B)S_C^2-(S_A+S_C)S_B^2} , \frac{S_AS_BS_C-S_B^2S_C-S_AS_B^2)}{(S_A+S_B)S_C^2-(S_A+S_C)S_B^2}=(0 :  \frac{c^2S_C^2-S_AS_BS_C}{c^2S_C^2-b^2S_B^2} , \frac{S_AS_BS_C-b^2S_B^2}{c^2S_C^2-b^2S_B^2}) $$.

Shift the circumcenter of the triangle to the zero vector so that $\vec H= \vec A+\vec B+ \vec C$. We have $\overrightarrow{P'H}=\vec A+ \frac{S_AS_BS_C-b^2S_B^2}{c^2S_C^2-b^2S_B^2}\vec B + \frac{c^2S_C^2-S_AS_BS_C}{c^2S_C^2-b^2S_B^2}\vec C$

We also have $\vec H= \frac{S_{BC}}{S_{BC}+S_{CA}+S_{AB}}\vec A + \frac{S_{CA}}{S_{BC}+S_{CA}+S_{AB}}\vec B+ \frac{S_{AB}}{S_{BC}+S_{CA}+S_{AB}}\vec C, \vec M =\frac{1}{2}\vec B+\frac{1}{2}\vec C$ giving $$\overrightarrow{MH}=\frac{S_{BC}}{S_{BC}+S_{CA}+S_{AB}}\vec A+\frac{S_{CA}-S_{BC}-S_{AB}}{2S_{BC}+2S_{CA}+2S_{AB}}\vec B+\frac{S_{AB}-S_{BC}-S_{CA}}{2S_{BC}+2S_{CA}+2S_{AB}}\vec C$$
The sum of the coefficients of this vector is $0$, so by the Generalised perpendicularity criterion, $MH\perp HP' \Leftrightarrow a^2(z_1y_2+y_1z_2)+b^2(x_1z_2+z_1x_2)+c^2(y_1x_2+x_1y_2)=0$ where $$(x_1,y_1,z_1)=(1, \frac{S_AS_BS_C-b^2S_B^2}{c^2S_C^2-b^2S_B^2}, \frac{c^2S_C^2-S_AS_BS_C}{c^2S_C^2-b^2S_B^2}), (x_2,y_2.z_2)=(\frac{S_{BC}}{S_{BC}+S_{CA}+S_{AB}}, \frac{S_{CA}-S_{BC}-S_{AB}}{2S_{BC}+2S_{CA}+2S_{AB}},\frac{S_{AB}-S_{BC}-S_{CA}}{2S_{BC}+2S_{CA}+2S_{AB}}) $$.

It is sufficient to show that $$a^2((c^2S_C^2-S_AS_BS_C)(S_{CA}-S_{BC}-S_{AB})+(S_AS_BS_C-b^2S_B^2)(S_{AB}-S_{BC}-S_{CA}))$$$$+b^2((c^2S_C^2-b^2S_B^2)(S_{AB}-S_{BC}-S_{CA})+(c^2S_C^2-S_AS_BS_C)(2S_{BC}))$$$$+c^2((S_AS_BS_C-b^2S_B^2)(2S_{BC})+(c^2S_C^2-b^2S_B^2)(S_{CA}-S_{BC}-S_{AB}))=0$$
Using $S_B+S_C=a^2$ and cyclic variations, we can express everything in terms of $S_A, S_B, S_C$, and we show that this expression is equal to 0:

Replace $S_A, S_B, S_C$ with $A, B, C$ respectively.

The above is $$(B+C)(((A+B)C^2-ABC)(CA-BC-AB)+(ABC-(A+C)B^2)(AB-BC-CA))$$$$+(A+C)(((A+B)C^2-(A+C)B^2)(AB-BC-CA)+((A+B)C^2-ABC)(2BC)) $$$$+(A+B)((ABC-(A+C)B^2)(2BC)+((A+B)C^2-(A+C)B^2)(CA-BC-AB)) $$$$=(B+C)(C(AC+BC-AB)(CA-BC-AB)+B(AC-AB-BC)(AB-BC-CA))$$$$+(A+C)((AC^2+BC^2-AB^2-B^2C)(AB-BC-CA)+2BC^2(AC+BC-AB))$$$$+(A+B)((2B^2C(AC-AB-BC)+((AC^2+BC^2-AB^2-B^2C)(CA-BC-AB))$$
Using $AC^2+BC^2-AB^2-B^2C=C(AC+BC-AB)+B(AC-AB-BC)$, we can factorise the first line in the above expression as $$(B+C)(AC+BC-AB)(AC-BC-AB)(C-B)$$, the second line as $$(A+C)(AC+BC-AB)(AC-BC-AB)(-B-C)$$and the third as $$(A+B)(AC+BC-AB)(AC-BC-AB)(B+C)$$.

So the expression is the sum of these, which is $(B+C)(AC+BC-AB)(AC-BC-AB)(C-B-A-C+A+B)=0$

This implies $MH\perp HP' $ which shows $MH\perp HG$ as required.
This post has been edited 2 times. Last edited by Googolplexian, Jul 29, 2020, 8:39 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
dolly33
88 posts
#13 • 1 Y
Y by TheRealGraceWu
[asy]/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -9.713265938717898, xmax = 13.883674226637623, ymin = -10.427071492316575, ymax = 8.290048185585707;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((0.9488075920872171,4.513200822008997)--(-4.48,-0.66), linewidth(1.2) + wrwrwr); 
draw((-4.48,-0.66)--(2.42,-0.56), linewidth(1.2) + wrwrwr); 
draw((2.42,-0.56)--(0.9488075920872171,4.513200822008997), linewidth(1.2) + wrwrwr); 
draw((0.9488075920872171,4.513200822008997)--(1.0226257460407102,-0.5802518007820187), linewidth(1.2) + wrwrwr); 
draw(circle((-1.0040302689482739,-2.4019114425691224), 3.888009908030206), linewidth(1.2) + wrwrwr); 
draw(circle((-1.0559697310517269,1.1819114425691228), 3.888009908030206), linewidth(1.2) + wrwrwr); 
draw((1.00074705419067,0.9293779368707521)--(2.7449862391248985,-1.371622033162286), linewidth(1.2) + wrwrwr); 
draw((-4.753046777021447,-3.432200851975958)--(2.6930467770214452,2.212200851975957), linewidth(1.2) + wrwrwr); 
draw(circle((5.847659023735562,2.7919108533615655), 5.192454574238403), linewidth(1.2) + wrwrwr); 
draw((-4.753046777021447,-3.432200851975958)--(8.950331808346226,6.955443739885415), linewidth(1.2) + wrwrwr); 
draw((0.9488075920872171,4.513200822008997)--(10.694570993280454,4.654443769852377), linewidth(1.2) + wrwrwr); 
draw((-3.0826257460407103,-0.6397481992179815)--(10.694570993280454,4.654443769852377), linewidth(1.2) + wrwrwr); 
 /* dots and labels */
dot((0.9488075920872171,4.513200822008997),dotstyle); 
label("$A$", (0.8151138801022,4.7471648179827755), NE * labelscalefactor); 
dot((-4.48,-0.66),dotstyle); 
label("$B$", (-4.966868879261028,-0.6005836614178768), NE * labelscalefactor); 
dot((2.42,-0.56),dotstyle); 
label("$C$", (2.603267277901804,-0.650718803412258), NE * labelscalefactor); 
dot((-1.03,-0.61),linewidth(4pt) + dotstyle); 
label("$M$", (-1.223715227669311,-0.48360166343098754), NE * labelscalefactor); 
dot((1.0226257460407102,-0.5802518007820187),linewidth(4pt) + dotstyle); 
label("$D$", (1.0825013040722342,-0.45017823543473345), NE * labelscalefactor); 
dot((-3.0826257460407103,-0.6397481992179815),linewidth(4pt) + dotstyle); 
label("$D'$", (-3.011868625468915,-0.5003133774291146), NE * labelscalefactor); 
dot((1.00074705419067,0.9293779368707521),linewidth(4pt) + dotstyle); 
label("$H$", (0.7148435961134372,1.1207228803892082), NE * labelscalefactor); 
dot((-1.0559697310517269,1.1819114425691228),linewidth(4pt) + dotstyle); 
label("$O$", (-1.357408939654328,0.467588844154296), NE * labelscalefactor); 
dot((-3.06074705419067,-2.1493779368707515),linewidth(4pt) + dotstyle); 
label("$A'$", (-3.1789857654501863,-2.5725659131968674), NE * labelscalefactor); 
dot((2.7449862391248985,-1.371622033162286),linewidth(4pt) + dotstyle); 
label("G", (2.8038078458793296,-1.2356287933467043), NE * labelscalefactor); 
dot((-4.753046777021447,-3.432200851975958),linewidth(4pt) + dotstyle); 
label("$T'$", (-5.300832875234808,-3.508421897091982), NE * labelscalefactor); 
dot((2.6930467770214452,2.212200851975957),linewidth(4pt) + dotstyle); 
label("$T$", (2.703537561890567,2.40752485824499), NE * labelscalefactor); 
dot((10.694570993280454,4.654443769852377),linewidth(4pt) + dotstyle); 
label("$P$", (10.758583708987848,4.78058824597903), NE * labelscalefactor); 
dot((5.821689292683837,4.583822295930688),linewidth(4pt) + dotstyle); 
label("$N$", (5.728357795551579,4.78058824597903), NE * labelscalefactor); 
dot((8.950331808346226,6.955443739885415),linewidth(4pt) + dotstyle); 
label("$L$", (9.020565453182625,7.086804777720561), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */[/asy]

Let $A'$ be the antipode of $A$ and let $T'$ be the reflection of $T$ wrt $M$.

Claim. If $HG\perp HT$, $HG=AT$.
pf)
note that $(BHC)$ has the same radius with $(ABC)$. Since $HT'=TA'$, by Pythagorean thm, we get $AT=HG$.

Now, let $N=MH\cap AP, L=MH\cap (AHP)$

note that $N$ is the midpoint of $AP$ since $\triangle AHP\sim \triangle DHD'$

Since $\angle ATN=\angle NLP=90$ and $AN=NP$, $ATPL$ is a parallelogram.

Redefine $G$ as the intersection of $(AHP)$ and a line perpendicular to $AP$ passing through $T$.

Note that $AN^2=NP^2=NT\cdot NH$. Therefore $\angle ATP=180-\angle AHP=180-\angle AGP$.

Since $GT\perp AP$, $T$ is the orthocenter of $\triangle AGP$.

Let $O'$ be the midpoint of $HP$. (the circumcenter of $(AHP)$)

It is well-known that $GT=2O'N$. Since $AH=2O'N$ ($N, O'$ are midpoints of $AP, PH$), $AH=GT$.

Hence, $AHGT$ is a parallelogram.

Then, we obtain that $AT=HG$.

Note that since $L$ is the reflection of $T$ wrt $N$, $L$ is the antipode of $G$.

$\therefore$ $GL$ is the diameter of $(AHP)$. $\angle GHL=90$

Now by Claim, we obtain that $B, H, C, G$ are cyclic. We are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Plops
946 posts
#14
Y by
Phantom Points
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
itslumi
284 posts
#15
Y by
Complex numbers work here very well :D
Z K Y
G
H
=
a