Y by HamstPan38825, Adventure10, Mango247, and 1 other user
Let
for
and suppose
. Prove that for any positive integer
,
![\[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \]](//latex.artofproblemsolving.com/5/a/d/5ad4ea89463088b023d252d18d9f6eb411ec9f64.png)




![\[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \]](http://latex.artofproblemsolving.com/5/a/d/5ad4ea89463088b023d252d18d9f6eb411ec9f64.png)
This post has been edited 1 time. Last edited by v_Enhance, Jul 18, 2014, 8:18 PM
Stay ahead of learning milestones! Enroll in a class over the summer!
Something appears to not have loaded correctly.