We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
CGMO6: Airline companies and cities
v_Enhance   13
N 10 minutes ago by Marcus_Zhang
Source: 2012 China Girl's Mathematical Olympiad
There are $n$ cities, $2$ airline companies in a country. Between any two cities, there is exactly one $2$-way flight connecting them which is operated by one of the two companies. A female mathematician plans a travel route, so that it starts and ends at the same city, passes through at least two other cities, and each city in the route is visited once. She finds out that wherever she starts and whatever route she chooses, she must take flights of both companies. Find the maximum value of $n$.
13 replies
v_Enhance
Aug 13, 2012
Marcus_Zhang
10 minutes ago
nice problem
hanzo.ei   0
24 minutes ago
Source: I forgot
Let triangle $ABC$ be inscribed in the circumcircle $(O)$ and circumscribed about the incircle $(I)$, with $AB < AC$. The incircle $(I)$ touches the sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. A line through $I$, perpendicular to $AI$, intersects $BC$, $CA$, and $AB$ at $X$, $Y$, and $Z$, respectively. The line $AI$ meets $(O)$ at $M$ (distinct from $A$). The circumcircle of triangle $AYZ$ intersects $(O)$ at $N$ (distinct from $A$). Let $P$ be the midpoint of the arc $BAC$ of $(O)$. The line $AI$ cuts segments $DF$ and $DE$ at $K$ and $L$, respectively, and the tangents to the circle $(DKL)$ at $K$ and $L$ intersect at $T$. Prove that $AT \perp BC$.
0 replies
hanzo.ei
24 minutes ago
0 replies
Find a given number of divisors of ab
proglote   9
N 38 minutes ago by zuat.e
Source: Brazil MO 2013, problem #2
Arnaldo and Bernaldo play the following game: given a fixed finite set of positive integers $A$ known by both players, Arnaldo picks a number $a \in A$ but doesn't tell it to anyone. Bernaldo thens pick an arbitrary positive integer $b$ (not necessarily in $A$). Then Arnaldo tells the number of divisors of $ab$. Show that Bernaldo can choose $b$ in a way that he can find out the number $a$ chosen by Arnaldo.
9 replies
proglote
Oct 24, 2013
zuat.e
38 minutes ago
2025 TST 22
EthanWYX2009   1
N an hour ago by hukilau17
Source: 2025 TST 22
Let \( A \) be a set of 2025 positive real numbers. For a subset \( T \subseteq A \), define \( M_T \) as the median of \( T \) when all elements of \( T \) are arranged in increasing order, with the convention that \( M_\emptyset = 0 \). Define
\[
P(A) = \sum_{\substack{T \subseteq A \\ |T| \text{ odd}}} M_T, \quad Q(A) = \sum_{\substack{T \subseteq A \\ |T| \text{ even}}} M_T.
\]Find the smallest real number \( C \) such that for any set \( A \) of 2025 positive real numbers, the following inequality holds:
\[
P(A) - Q(A) \leq C \cdot \max(A),
\]where \(\max(A)\) denotes the largest element in \( A \).
1 reply
EthanWYX2009
4 hours ago
hukilau17
an hour ago
Deriving Van der Waerden Theorem
Didier2   0
an hour ago
Source: Khamovniki 2023-2024 (group 10-1)
Suppose we have already proved that for any coloring of $\Large \mathbb{N}$ in $r$ colors, there exists an arithmetic progression of size $k$. How can we derive Van der Waerden's theorem for $W(r, k)$ from this?
0 replies
Didier2
an hour ago
0 replies
Not so classic orthocenter problem
m4thbl3nd3r   6
N an hour ago by maths_enthusiast_0001
Source: own?
Let $O$ be circumcenter of a non-isosceles triangle $ABC$ and $H$ be a point in the interior of $\triangle ABC$. Let $E,F$ be foots of perpendicular lines from $H$ to $AC,AB$. Suppose that $BCEF$ is cyclic and $M$ is the circumcenter of $BCEF$, $HM\cap AB=K,AO\cap BE=T$. Prove that $KT$ bisects $EF$
6 replies
m4thbl3nd3r
Yesterday at 4:59 PM
maths_enthusiast_0001
an hour ago
Functional equations
hanzo.ei   1
N an hour ago by GreekIdiot
Source: Greekldiot
Find all $f: \mathbb R_+ \rightarrow \mathbb R_+$ such that $f(xf(y)+f(x))=yf(x+yf(x)) \: \forall \: x,y \in \mathbb R_+$
1 reply
hanzo.ei
2 hours ago
GreekIdiot
an hour ago
A number theory problem from the British Math Olympiad
Rainbow1971   6
N an hour ago by ektorasmiliotis
Source: British Math Olympiad, 2006/2007, round 1, problem 6
I am a little surprised to find that I am (so far) unable to solve this little problem:

[quote]Let $n$ be an integer. Show that, if $2 + 2 \sqrt{1+12n^2}$ is an integer, then it is a perfect square.[/quote]

I set $k := \sqrt{1+12n^2}$. If $2 + 2 \sqrt{1+12n^2}$ is an integer, then $k (=\sqrt{1+12n^2})$ is at least rational, so that $1 + 12n^2$ must be a perfect square then. Using Conway's topograph method, I have found out that the smallest non-negative pairs $(n, k)$ for which this happens are $(0,1), (2,7), (28,97)$ and $(390, 1351)$, and that, for every such pair $(n,k)$, the "next" such pair can be calculated as
$$
\begin{bmatrix}
7 & 2 \\
24 & 7 
\end{bmatrix} \begin{bmatrix}
n \\
k 
\end{bmatrix}
.$$The eigenvalues of that matrix are irrational, however, so that any calculation which uses powers of that matrix is a little cumbersome. There must be an easier way, but I cannot find it. Can you?

Thank you.




6 replies
Rainbow1971
Yesterday at 8:39 PM
ektorasmiliotis
an hour ago
A number theory about divisors which no one fully solved at the contest
nAalniaOMliO   20
N an hour ago by Bluecloud123
Source: Belarusian national olympiad 2024
Let's call a pair of positive integers $(k,n)$ interesting if $n$ is composite and for every divisor $d<n$ of $n$ at least one of $d-k$ and $d+k$ is also a divisor of $n$
Find the number of interesting pairs $(k,n)$ with $k \leq 100$
M. Karpuk
20 replies
nAalniaOMliO
Jul 24, 2024
Bluecloud123
an hour ago
CHKMO 2017 Q3
noobatron3000   7
N 2 hours ago by Entei
Source: CHKMO
Let ABC be an acute-angled triangle. Let D be a point on the segment BC, I the incentre of ABC. The circumcircle of ABD meets BI at P and the circumcircle of ACD meets CI at Q. If the area of PID and the area of QID are equal, prove that PI*QD=QI*PD.
7 replies
noobatron3000
Dec 31, 2016
Entei
2 hours ago
Geometry
Jackson0423   1
N 2 hours ago by ricarlos
Source: Own
In triangle ABC with circumcenter O, if the intersection point of lines BO and AC is N, then BO = 2ON, and BMN = 122 degrees with respect to the midpoint M of AB. Find MNB.
1 reply
Jackson0423
Yesterday at 4:40 PM
ricarlos
2 hours ago
A functional equation from MEMO
square_root_of_3   24
N 2 hours ago by pco
Source: Middle European Mathematical Olympiad 2022, problem I-1
Find all functions $f: \mathbb R \to \mathbb R$ such that $$f(x+f(x+y))=x+f(f(x)+y)$$holds for all real numbers $x$ and $y$.
24 replies
square_root_of_3
Sep 1, 2022
pco
2 hours ago
Numbers not power of 5
Kayak   33
N 2 hours ago by ihategeo_1969
Source: Indian TST D1 P2
Show that there do not exist natural numbers $a_1, a_2, \dots, a_{2018}$ such that the numbers \[ (a_1)^{2018}+a_2, (a_2)^{2018}+a_3, \dots, (a_{2018})^{2018}+a_1 \]are all powers of $5$

Proposed by Tejaswi Navilarekallu
33 replies
Kayak
Jul 17, 2019
ihategeo_1969
2 hours ago
Chile TST IMO prime geo
vicentev   4
N 2 hours ago by Retemoeg
Source: TST IMO CHILE 2025
Let \( ABC \) be a triangle with \( AB < AC \). Let \( M \) be the midpoint of \( AC \), and let \( D \) be a point on segment \( AC \) such that \( DB = DC \). Let \( E \) be the point of intersection, different from \( B \), of the circumcircle of triangle \( ABM \) and line \( BD \). Define \( P \) and \( Q \) as the points of intersection of line \( BC \) with \( EM \) and \( AE \), respectively. Prove that \( P \) is the midpoint of \( BQ \).
4 replies
vicentev
Today at 2:35 AM
Retemoeg
2 hours ago
IMO96/2 [the lines AP, BD, CE meet at a point]
Arne   46
N Mar 1, 2025 by quantam13
Source: IMO 1996 problem 2, IMO Shortlist 1996, G2
Let $ P$ be a point inside a triangle $ ABC$ such that
\[ \angle APB - \angle ACB = \angle APC - \angle ABC.
\]
Let $ D$, $ E$ be the incenters of triangles $ APB$, $ APC$, respectively. Show that the lines $ AP$, $ BD$, $ CE$ meet at a point.
46 replies
Arne
Sep 30, 2003
quantam13
Mar 1, 2025
IMO96/2 [the lines AP, BD, CE meet at a point]
G H J
Source: IMO 1996 problem 2, IMO Shortlist 1996, G2
G
H
=
a