Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Interesting inequalities
sqing   0
18 minutes ago
Source: Own
Let $ a,b $ be real numbers . Prove that
$$-\frac{1}{12}\leq \frac{ab+a+b+1}{(a^2+3)(b^2+3)}\leq \frac{1}{4} $$$$-\frac{5}{96}\leq \frac{ab+a+b+2}{(a^2+4)(b^2+4)}\leq \frac{1}{5} $$$$-\frac{1}{16}\leq \frac{ab+a+b+1}{(a^2+4)(b^2+4)}\leq \frac{3+\sqrt 5}{32} $$$$-\frac{1}{18}\leq \frac{ab+a+b+3}{(a^2+3)(b^2+3)}\leq \frac{2+\sqrt[3] 2+\sqrt[3] {4}}{12} $$
0 replies
sqing
18 minutes ago
0 replies
FE solution too simple?
Yiyj1   3
N 19 minutes ago by AshAuktober
Source: 101 Algebra Problems from the AMSP
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?
3 replies
Yiyj1
2 hours ago
AshAuktober
19 minutes ago
Inspired by Ruji2018252
sqing   3
N an hour ago by sqing
Source: Own
Let $ a,b,c>1 $ and $ \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c-8 $. Prove that
$$ab+bc+ca+a+b+c \leq  36$$$$ab+bc+ ca\leq  27$$
3 replies
sqing
3 hours ago
sqing
an hour ago
Interesting inequalities
sqing   1
N 2 hours ago by sqing
Source: Own
Let $ a,b $ be real numbers . Prove that
$$-\frac{11+8\sqrt 2}{7}\leq \frac{ab+a+b-1}{(a^2+a+1)(b^2+b+1)}\leq \frac{2}{9} $$$$-\frac{37+13\sqrt{13}}{414}\leq \frac{ab+a+b-2}{(a^2+a+4)(b^2+b+4)}\leq \frac{3}{50} $$$$-\frac{5\sqrt 5+9}{22}\leq \frac{ab+a+b-2}{(a^2+a+2)(b^2+b+2)}\leq  \frac{5\sqrt 5-9}{22}$$
1 reply
sqing
2 hours ago
sqing
2 hours ago
No more topics!
Concylic implies concyclic
fattypiggy123   8
N Nov 9, 2020 by mathaddiction
Source: China Mathematical Olympiad 2016 Q2
In $\triangle AEF$, let $B$ and $D$ be on segments $AE$ and $AF$ respectively, and let $ED$ and $FB$ intersect at $C$. Define $K,L,M,N$ on segments $AB,BC,CD,DA$ such that $\frac{AK}{KB}=\frac{AD}{BC}$ and its cyclic equivalents. Let the incircle of $\triangle AEF$ touch $AE,AF$ at $S,T$ respectively; let the incircle of $\triangle CEF$ touch $CE,CF$ at $U,V$ respectively.
Prove that $K,L,M,N$ concyclic implies $S,T,U,V$ concyclic.
8 replies
fattypiggy123
Dec 16, 2015
mathaddiction
Nov 9, 2020
Concylic implies concyclic
G H J
G H BBookmark kLocked kLocked NReply
Source: China Mathematical Olympiad 2016 Q2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fattypiggy123
615 posts
#1 • 5 Y
Y by rightways, Mr.C, Adventure10, Mango247, Rounak_iitr
In $\triangle AEF$, let $B$ and $D$ be on segments $AE$ and $AF$ respectively, and let $ED$ and $FB$ intersect at $C$. Define $K,L,M,N$ on segments $AB,BC,CD,DA$ such that $\frac{AK}{KB}=\frac{AD}{BC}$ and its cyclic equivalents. Let the incircle of $\triangle AEF$ touch $AE,AF$ at $S,T$ respectively; let the incircle of $\triangle CEF$ touch $CE,CF$ at $U,V$ respectively.
Prove that $K,L,M,N$ concyclic implies $S,T,U,V$ concyclic.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41479 posts
#2 • 3 Y
Y by stroller, Adventure10, Mango247
2016 China Mathematical Olympiad Q2
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
joyce_tan
94 posts
#3 • 10 Y
Y by buzzychaoz, Dukejukem, pavel kozlov, LJQ, A_Math_Lover, stroller, teomihai, Adventure10, Mango247, CeuAzul
Note that $\frac{AN}{AK}=\frac{\frac{AB*AD}{AB+DC}}{\frac{AB*AD}{BC+AD}}=\frac{AB+DC}{BC+AD}=\frac{BL}{BK}=\frac{CL}{CM}=\frac{DN}{DM}$.
Suppose $AN\neq AK$. WLOG $AN>AK$
Then $\angle NKA>\angle KNA$. Similarly $\angle BKL > \angle BLK$, $\angle LMC>\angle MLC$, $\angle DMN>\angle DNM$.
Since $\angle MNK = 180^o - \angle DNM - \angle KNA$ and so on, $\angle MNK + \angle MLK < \angle NML + \angle NKL$, which is patently false.
Hence $AN = AK$ and so on, which implies $AB+DC = BC + AD$, which implies $ABCD$ is tangential.

Now let $G, H, I, J$ be the tangency points of the inscribed circle of $ABCD$ on $AB, BC, CD, AD$ respectively.
$AF-AE = FJ-EG = FH-EI = CF-CE$, which implies $TF-SE=VF-UE$. However, since $SE+TF = VF+UE = FE$, $TF=VF,UE=SE$.
$\angle TVU = \pi - \angle FVT + \angle CVU = \pi + \angle AFB/2 - \angle DCB/2 = \pi - \angle FDE/2 = \pi - \frac{\angle A + \angle DEA}{2} = \pi - \angle UST$, which implies $SUVT$ concyclic, and we are done.
This post has been edited 1 time. Last edited by joyce_tan, Dec 17, 2015, 2:32 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Skravin
763 posts
#4 • 2 Y
Y by Adventure10, Mango247
joyce_tan wrote:
Note that $\frac{AN}{AK}=\frac{\frac{AB*AD}{AB+DC}}{\frac{AB*AD}{BC+AD}}=\frac{AB+DC}{BC+AD}=\frac{BL}{BK}=\frac{CL}{CM}=\frac{DN}{DM}$.
Suppose $AN\neq AK$. WLOG $AN>AK$
Then $\angle NKA>\angle KNA$. Similarly $\angle BKL > \angle BLK$, $\angle LMC>\angle MLC$, $\angle DMN>\angle DNM$.
Since $\angle MNK = 180^o - \angle DNM - \angle KNA$ and so on, $\angle MNK + \angle MLK < \angle NML + \angle NKL$, which is patently false.
Hence $AN = AK$ and so on, which implies $AB+DC = BC + AD$, which implies $ABCD$ is tangential.

Now let $G, H, I, J$ be the tangency points of the inscribed circle of $ABCD$ on $AB, BC, CD, AD$ respectively.
$AF-AE = FJ-EG = FH-EI = CF-CE$, which implies $TF-SE=VF-UE$. However, since $SE+TF = VF+UE = FE$, $TF=VF,UE=SE$.
$\angle TVU = \pi - \angle FVT + \angle CVU = \pi + \angle AFB/2 - \angle DCB/2 = \pi - \angle FDE/2 = \pi - \frac{\angle A + \angle DEA}{2} = \pi - \angle UST$, which implies $SUVT$ concyclic, and we are done.

it's been a while from the answer but isn't the nominator and denominator here

$$\frac{AN}{AK}=\frac{\frac{AB*AD}{AB+DC}}{\frac{AB*AD}{BC+AD}}=\frac{AB+DC}{BC+AD}$$
has been changed....?

$\frac{AN}{AK}=\frac{\frac{AB+DC}{AB*AD}}{\frac{BC+AD}{AB*AD}}$

would be right...
This post has been edited 3 times. Last edited by Skravin, Sep 25, 2016, 1:46 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
for63434
105 posts
#5 • 2 Y
Y by Adventure10, Mango247
It is much easier to show ABCD is tangential using the lemma below
http://artofproblemsolving.com/community/c6h487126p2729541 here posted by Luis Gonzalez
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
for63434
105 posts
#6 • 2 Y
Y by Adventure10, Mango247
Plus,
<joyce_tan> wrote:
WLOG $AN>AK$
Then $\angle NKA>\angle KNA$. Similarly $\angle BKL > \angle BLK$, $\angle LMC>\angle MLC$, $\angle DMN>\angle DNM$.
You can't use WLOG unconditionally for several times.
It is possible to "WLOG" $\angle NKA>\angle KNA$ but you can't know the other angles "similarly";)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
stroller
894 posts
#7 • 2 Y
Y by Adventure10, Mango247
Anyone trig bashed this?
for63434 wrote:
Plus,
<joyce_tan> wrote:
WLOG $AN>AK$
Then $\angle NKA>\angle KNA$. Similarly $\angle BKL > \angle BLK$, $\angle LMC>\angle MLC$, $\angle DMN>\angle DNM$.
You can't use WLOG unconditionally for several times.
It is possible to "WLOG" $\angle NKA>\angle KNA$ but you can't know the other angles "similarly";)

But we also have the first line of the solution with ratios that gets rid of the necessity of WLOG unconditionally for several times ;)
This post has been edited 1 time. Last edited by stroller, Apr 5, 2019, 3:11 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SpecialBeing2017
249 posts
#8
Y by
I really have lost my geo proficiency. I can't even solve P2 now.

Alternate Proof
This post has been edited 1 time. Last edited by SpecialBeing2017, Mar 5, 2020, 5:39 AM
Reason: XXX
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#9 • 1 Y
Y by Rounak_iitr
A perfect example for demonstrating the power of Miquel Points.
[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -3.1317773162319225, xmax = 3.01237765869825, ymin = -2.3803805514395178, ymax = 2.838847868124822;  /* image dimensions */pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen zzttqq = rgb(0.6,0.2,0); draw((-1.48358482058165,0.9450266302452713)--(-0.9838366602156117,0.17906821609596485)--(0.7831897936058747,0.6217827170254794)--cycle, linewidth(0.8) + zzttqq); draw((-1.48358482058165,0.9450266302452713)--(-0.9140037664308858,0.5627441273896615)--(0.17611475167134102,1.3864469056193574)--cycle, linewidth(0.8) + zzttqq);  /* draw figures */draw(circle((0,0), 1), linewidth(0.8)); draw((-2.481600786088761,-0.6217454476380844)--(2.377589164771678,-1.3865029432810163), linewidth(0.8)); draw((2.377589164771678,-1.3865029432810163)--(-0.5887340739616359,2.3498409940765317), linewidth(0.8)); draw((-0.5887340739616359,2.3498409940765317)--(-1.167243182055562,-0.828603965169733), linewidth(0.8)); draw((-2.481600786088761,-0.6217454476380844)--(0.17611475167134102,1.3864469056193574), linewidth(0.8)); draw((-0.5887340739616359,2.3498409940765317)--(0.26403735206313833,-1.053864250917828), linewidth(0.8) + blue); draw((-2.481600786088761,-0.6217454476380844)--(1.0649938764206688,0.26682579169819126), linewidth(0.8) + fuqqzz); draw((-0.6028599608362175,0.7978470201865482)--(-0.1554700507202434,-0.9878406062361704), linewidth(0.8) + blue); draw((-0.9838366602156117,0.17906821609596485)--(0.7831897936058747,0.6217827170254794), linewidth(0.8) + fuqqzz); draw(circle((-0.2943670369808166,1.1749204970382654), 1.2112349593788623), linewidth(0.8)); draw(circle((-1.2408003930443805,-0.3108727238190422), 1.2791510723107569), linewidth(0.8)); draw((-1.48358482058165,0.9450266302452713)--(-0.9838366602156117,0.17906821609596485), linewidth(0.8) + zzttqq); draw((-0.9838366602156117,0.17906821609596485)--(0.7831897936058747,0.6217827170254794), linewidth(0.8) + zzttqq); draw((0.7831897936058747,0.6217827170254794)--(-1.48358482058165,0.9450266302452713), linewidth(0.8) + zzttqq); draw((-1.48358482058165,0.9450266302452713)--(-0.9140037664308858,0.5627441273896615), linewidth(0.8) + zzttqq); draw((-0.9140037664308858,0.5627441273896615)--(0.17611475167134102,1.3864469056193574), linewidth(0.8) + zzttqq); draw((0.17611475167134102,1.3864469056193574)--(-1.48358482058165,0.9450266302452713), linewidth(0.8) + zzttqq); draw((-0.9838366602156117,0.17906821609596485)--(-0.1554700507202434,-0.9878406062361704), linewidth(0.8)); draw((-1.167243182055562,-0.828603965169733)--(-0.5696533554679275,-0.40438619507010276), linewidth(0.8)); draw((0.17611475167134102,1.3864469056193574)--(0.0901649163848286,0.7098148686060137), linewidth(0.8));  /* dots and labels */dot((0,0),dotstyle); label("$I$", (0.02288289939082733,0.05305717160630337), NE * labelscalefactor); dot((0.7831897936058747,0.6217827170254794),dotstyle); label("$K$", (0.8046660592833762,0.6751803903940359), NE * labelscalefactor); dot((-0.6028599608362175,0.7978470201865482),dotstyle); label("$L$", (-0.5827237737653724,0.8513568771303849), NE * labelscalefactor); dot((-0.9838366602156117,0.17906821609596485),dotstyle); label("$M$", (-0.9626043232906251,0.23473917355316332), NE * labelscalefactor); dot((-0.1554700507202434,-0.9878406062361704),linewidth(4pt) + dotstyle); label("$N$", (-0.13127152650347806,-0.9434410814961708), NE * labelscalefactor); dot((2.377589164771678,-1.3865029432810163),linewidth(4pt) + dotstyle); label("$A$", (2.401265470331539,-1.3398381766529561), NE * labelscalefactor); dot((0.17611475167134102,1.3864469056193574),linewidth(4pt) + dotstyle); label("$B$", (0.19905938612717636,1.4294359742340301), NE * labelscalefactor); dot((-0.9140037664308858,0.5627441273896615),linewidth(4pt) + dotstyle); label("$C$", (-0.8910326255539832,0.609114207867905), NE * labelscalefactor); dot((-1.167243182055562,-0.828603965169733),linewidth(4pt) + dotstyle); label("$D$", (-1.144286325237485,-0.7837811403913545), NE * labelscalefactor); dot((-0.5887340739616359,2.3498409940765317),linewidth(4pt) + dotstyle); label("$E$", (-0.5662072281338397,2.392901136073439), NE * labelscalefactor); dot((-2.481600786088761,-0.6217454476380844),linewidth(4pt) + dotstyle); label("$F$", (-2.4601044605495916,-0.580077077602451), NE * labelscalefactor); dot((0.26403735206313833,-1.053864250917828),linewidth(4pt) + dotstyle); label("$G$", (0.2871476294953509,-1.0095072640223017), NE * labelscalefactor); dot((1.0649938764206688,0.26682579169819126),linewidth(4pt) + dotstyle); label("$H$", (1.0854473350194325,0.311816386500316), NE * labelscalefactor); dot((-1.48358482058165,0.9450266302452713),linewidth(4pt) + dotstyle); label("$P$", (-1.4636062074471177,0.9889947573931576), NE * labelscalefactor); dot((-0.5696533554679275,-0.40438619507010276),linewidth(4pt) + dotstyle); label("$D_1$", (-0.549690682502307,-0.3598564691820147), NE * labelscalefactor); dot((0.0901649163848286,0.7098148686060137),linewidth(4pt) + dotstyle); label("$B_1$", (0.11097114275900184,0.7522576033411886), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
CLAIM 1. Let $G$ be the intersection of the angle bisector of $\angle DEA$ and $AD$, then $LN\|EG$.
Proof.
The key step is to consider the Miquel Point of $ABCD$. Then
$$\frac{BK}{KA}=\frac{BC}{DA}=\frac{PB}{PA}$$Hence $PK$ is the angle bisector of $\angle BPA$, and the cyclic variants hold by symmetry.
Therefore, $P$ is also the center of spiral similarity sending $MK$ to $DA$, hence $P,E,M,K$ are concyclic. Similarly $P,L,N,F$ are concyclic.
Now suddenly the angles become chasable. We have
$$\angle LNG=\angle FPL=\angle FPC+\frac{1}{2}\angle CPL=\angle EDA+\frac{1}{2}\angle CEB=\angle EGA$$$\blacksquare$
By symmetry $MK\|FH$ where $FH$ is the angle bisector of $\angle BFA$

CLAIM 2. $K,L,M,N$ concyclic implies $ABCD$ is a circumscribed quadrilateral (in fact after proving this claim it is easy to show that it is inscribed as well but it is not needed in the second part of the problem).
Proof.
We have $$\angle MNL=\angle DNL-\angle DNM=\angle DGE-\angle DNM$$and $$\angle MKL=\angle BKM-\angle BKL=\angle BHF-\angle BKL$$Since they are equal,$$\angle BKL-\angle DNM=\angle BHF-\angle DGE=\frac{1}{2}\angle BFD+\angle BAD-\frac{1}{2}\angle DEA-\angle BAD=\frac{1}{2}(\angle CDA-\angle CBA) \qquad(1)$$Rearraning gives
$$\angle DNM+\frac{1}{2}\angle MDN=\angle BKL+\frac{1}{2}\angle LBK$$Let $B_1$ be intersection of the angle bisector of $\angle LBK$ and $LK$. Define $D_1$ similarly. Then From $(1)$ we have $$\angle MD_1D=\angle BB_1L$$
On the other hand, We have $\frac{BL}{BK}=\frac{NA}{AK}=\frac{DN}{DM}=\frac{CM}{CL}=k$ for some $k$. Suppose on the contrary that $k>1$, then $DN>DM$ and $BL>BK$, hence $\angle MD_1D>90^{\circ}>\angle BB_1L$, contradiction. Similarly $k<1$ is impossible. This implies $k=1$ so $DN=DM$, $CM=CL$, $NA=NK$ and $BL=BK$ so we are done. $\blacksquare$

[asy]
size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -3.9959790753015536, xmax = 4.556735100145964, ymin = -2.4376172871819906, ymax = 4.827591528520739;  /* image dimensions */ /* draw figures */draw(circle((0,0), 1), linewidth(0.8)); draw((-2.9175509758486338,-0.43045231576364834)--(1.8866099483124603,-1.4016001707505017), linewidth(0.8)); draw((1.8866099483124603,-1.4016001707505017)--(-0.43054417783469734,2.91817360526708), linewidth(0.8)); draw((-0.43054417783469734,2.91817360526708)--(-1.178237903141253,-0.7820496469886266), linewidth(0.8)); draw((-2.9175509758486338,-0.43045231576364834)--(0.40849440731718795,1.3539889719243832), linewidth(0.8)); draw(circle((-0.6113106602005902,0.45415488584969743), 1.3240259920962445), linewidth(0.8)); draw((-2.9175509758486338,-0.43045231576364834)--(-0.43054417783469734,2.91817360526708), linewidth(0.8)); draw(circle((-1.3002819207681409,0.9658502047882521), 0.4658223465017571), linewidth(0.8));  /* dots and labels */dot((0,0),dotstyle); label("$I$", (0.027475173900907653,0.0760836532721184), NE * labelscalefactor); dot((0.8812259804908418,0.4726952203142682),dotstyle); label("$K$", (0.9088032475357325,0.5512344407969805), NE * labelscalefactor); dot((-0.47276298742979583,0.8811896264235382),dotstyle); label("$L$", (-0.44001189124452117,0.9574117269069432), NE * labelscalefactor); dot((-0.980189078650461,0.19806405553345718),dotstyle); label("$M$", (-0.9458175682871163,0.27534043513738315), NE * labelscalefactor); dot((-0.19813943397435527,-0.9801738441237463),linewidth(4pt) + dotstyle); label("$N$", (-0.16411788558492382,-0.9202002560542053), NE * labelscalefactor); dot((1.8866099483124603,-1.4016001707505017),linewidth(4pt) + dotstyle); label("$A$", (1.9204146016209227,-1.3417049869230346), NE * labelscalefactor); dot((0.40849440731718795,1.3539889719243832),linewidth(4pt) + dotstyle); label("$B$", (0.4413161823903037,1.4172350696729388), NE * labelscalefactor); dot((-0.8870665151689868,0.6589135491714202),linewidth(4pt) + dotstyle); label("$C$", (-0.8538528997339172,0.7198363331445122), NE * labelscalefactor); dot((-1.178237903141253,-0.7820496469886266),linewidth(4pt) + dotstyle); label("$D$", (-1.145074350152381,-0.7209434741889406), NE * labelscalefactor); dot((-0.43054417783469734,2.91817360526708),linewidth(4pt) + dotstyle); label("$E$", (-0.4016932793473549,2.9806344350773237), NE * labelscalefactor); dot((-2.9175509758486338,-0.43045231576364834),linewidth(4pt) + dotstyle); label("$F$", (-2.8847393302837308,-0.36841224473501066), NE * labelscalefactor); dot((0.1551505149394301,-1.0515904310141926),linewidth(4pt) + dotstyle); label("$G$", (0.1884133438690061,-0.9891737574691046), NE * labelscalefactor); dot((1.0515612864816217,0.15514621498661318),linewidth(4pt) + dotstyle); label("$H$", (1.0850688622626974,0.21403065610191707), NE * labelscalefactor); dot((-1.6742470174178203,1.2435921083393704),linewidth(4pt) + dotstyle); label("$J$", (-1.8731279761985407,1.3405978458786063), NE * labelscalefactor); dot((0.5554554428797828,1.0800156438854494),linewidth(4pt) + dotstyle); label("$S$", (0.5869269075995356,1.1413410640133415), NE * labelscalefactor); dot((-0.8736524208418742,-0.8436207605430356),linewidth(4pt) + dotstyle); label("$T$", (-0.846189177354484,-0.7822532532244066), NE * labelscalefactor); dot((-0.8436879441357878,0.8735875416820027),linewidth(4pt) + dotstyle); label("$U$", (-0.8155342878367509,0.9344205597686435), NE * labelscalefactor); dot((-1.0800583566244126,0.5553723852946328),linewidth(4pt) + dotstyle); label("$V$", (-1.0531096815991818,0.6202079422118798), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]

CLAIM 3. If $ABCD$ is circumscribed then the incircle of $\triangle CEF$ and $\triangle AEF$.
Proof.
This is just length chasing. It suffices to show $$AE-AF=EC-EF$$Indeed, $AE-AF=EB+BA-DA-DF=EB+BC-CD-DF$, hence it suffices to show
$$EB+BC-EC=CD+DF-CF\qquad(2)$$Notice that $L$ is the touching point of the $E$-excircle and $BC$, hence the left hand side of $(2)$ equals $CL$ while the right hand side of $(2)$ equals $CM$. Obviously they are equal so we are done. $\blacksquare$.

Now let $Z$ be the intersection of $UV$ and $EF$. Then $(E,F;J,Z)=-1$. Therefore, $T,S,Z$ are collinear. As a result
$$ZT\times ZS=ZJ^2=ZU\times ZV$$hence $S,T,U,V$ are concyclic as desired.
Z K Y
N Quick Reply
G
H
=
a