We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
Bosnia and Herzegovina EGMO TST 2017 Problem 2
gobathegreat   2
N 10 minutes ago by anvarbek0813
Source: Bosnia and Herzegovina EGMO Team Selection Test 2017
It is given triangle $ABC$ and points $P$ and $Q$ on sides $AB$ and $AC$, respectively, such that $PQ\mid\mid BC$. Let $X$ and $Y$ be intersection points of lines $BQ$ and $CP$ with circumcircle $k$ of triangle $APQ$, and $D$ and $E$ intersection points of lines $AX$ and $AY$ with side $BC$. If $2\cdot DE=BC$, prove that circle $k$ contains intersection point of angle bisector of $\angle BAC$ with $BC$
2 replies
gobathegreat
Sep 19, 2018
anvarbek0813
10 minutes ago
Another NT FE
nukelauncher   58
N 21 minutes ago by andrewthenerd
Source: ISL 2019 N4
Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.
58 replies
nukelauncher
Sep 22, 2020
andrewthenerd
21 minutes ago
Easiest Functional Equation
NCbutAN   7
N 23 minutes ago by InftyByond
Source: Random book
Find all functions $f: \mathbb R \to \mathbb R$ such that $$f(yf(x)+f(xy))=(x+f(x))f(y)$$Follows for all reals $x,y$.
7 replies
NCbutAN
Mar 2, 2025
InftyByond
23 minutes ago
Lower bound for integer relatively prime to n
62861   23
N an hour ago by YaoAOPS
Source: USA Winter Team Selection Test #1 for IMO 2018, Problem 1
Let $n \ge 2$ be a positive integer, and let $\sigma(n)$ denote the sum of the positive divisors of $n$. Prove that the $n^{\text{th}}$ smallest positive integer relatively prime to $n$ is at least $\sigma(n)$, and determine for which $n$ equality holds.

Proposed by Ashwin Sah
23 replies
62861
Dec 11, 2017
YaoAOPS
an hour ago
No more topics!
Properties related to the orthocenter of BPC, CPA, APB
TelvCohl   1
N Aug 28, 2024 by foolish07
Source: Own
In this topic, I'll prove some properties related to the orthocenter $ J_a, $ $ J_b, $ $ J_c $ of $ \triangle BPC, $ $ \triangle CPA, $ $ \triangle APB, $ respectively (where $ P $ is an arbitrary point). Note that all symbols in this post bear the same meaning (except $ (\spadesuit) $).

Property 1 : Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC $ and let $ \triangle Q_aQ_bQ_c $ be its pedal triangle WRT $ \triangle ABC. $ Then $ \triangle Q_aQ_bQ_c $ is inscribed in $ \triangle J_aJ_bJ_c $ (i.e. $ Q_a, $ $ Q_b, $ $ Q_c $ lies on $ J_bJ_c, $ $ J_cJ_a, $ $ J_aJ_b, $ respectively.).

Proof : Let $ \triangle P_AP_BP_C $ be the antipedal triangle of $ P $ WRT $ \triangle ABC. $ Since $ A, $ $ C, $ $ P, $ $ P_B $ lie on a circle with diameter $ PP_B, $ so $ \measuredangle PP_BP_C $ $ = $ $ \measuredangle PCA $ $ = $ $ \measuredangle BCQ. $ Similarly, we can prove $ \measuredangle PP_CP_B $ $ = $ $ \measuredangle CBQ, $ so we get $ \triangle PP_BP_C $ $ \cup $ $ A $ $ \stackrel{-}{\sim} $ $ \triangle QCB $ $ \cup $ $ Q_a. $ Combining $ BJ_c $ $ \stackrel{\parallel}{=} $ $ P_CA, $ $ CJ_b $ $ \stackrel{\parallel}{=} $ $ P_BA $ $ \Longrightarrow $ $ \tfrac{BQ_a}{CQ_a} $ $ = $ $ \tfrac{BJ_c}{CJ_b}. $ i.e. $ Q_a $ $ \in $ $ J_bJ_c. $ $ \blacksquare $
____________________________________________________________
Property 2 : Let $ H_P $ be the orthocenter of $ \triangle P_AP_BP_C $ and let $ M $ be the midpoint of $ PH_P. $ Then the anticomplement $ T $ of $ M $ WRT $ \triangle ABC $ is the orthocenter of $ \triangle AJ_bJ_c, $ $ \triangle BJ_cJ_a, $ $ \triangle CJ_aJ_b. $

Proof : Let $ G $ be the centroid of $ \triangle ABC. $ Clearly, $ G $ is the centroid of $ \triangle PTH_P, $ so the midpoint of $ TH_P $ is the complement of $ P $ WRT $ \triangle ABC. $ Notice $ J_a $ is the reflection of $ P_A $ in the midpoint of $ BC $ we get $ J_aT $ $ \parallel $ $ P_AH_P $ $ \Longrightarrow $ $ J_aT $ $ \parallel $ $ AP. $ Analogously, we can prove $ J_bT $ $ \parallel $ $ BP $ and $ J_cT $ $ \parallel $ $ CP, $ so $ T $ is the orthocenter of $ \triangle AJ_bJ_c, $ $ \triangle BJ_cJ_a, $ $ \triangle CJ_aJ_b. $ $ \blacksquare $
____________________________________________________________
Property 3 : Let $ K_a, $ $ K_b, $ $ K_c $ be the orthocenter of $ \triangle BQC, $ $ \triangle CQA, $ $ \triangle AQB, $ respectively. Then the A-altitude of $ \triangle ABC, $ $ J_bJ_c, $ $ K_bK_c $ are concurrent (similar for $ (J_cJ_a , K_cK_a) $ and $ (J_aJ_b , K_aK_b) $).

Proof : Let $ AP $ cuts $ \odot (BPC) $ at $ R_a $ and let $ T_a $ be the projection of $ R_a $ on $ BC $ (define $ R_b, $ $ R_c, $ $ T_b, $ $ T_c $ similarly). Let $ H_A, $ $ H_a $ be the orthocenter of $ \triangle P_ABC, $ $ \triangle R_aBC, $ respectively. From $ \measuredangle R_aBC $ $ = $ $ \measuredangle R_aPC $ $ = $ $ \measuredangle P_CP_BP_A, $ $ \measuredangle R_aCB $ $ = $ $ \measuredangle R_aPB $ $ = $ $ \measuredangle P_BP_CP_A $ $ \Longrightarrow $ $ \triangle R_aBC $ $ \cup $ $ H_a $ $ \stackrel{-}{\sim} $ $ \triangle P_AP_BP_C $ $ \cup $ $ H_P, $ so notice $ P_AH_A $ $ \stackrel{\parallel}{=} $ $ R_aH_a $ we get $$ \frac{P_AH_A}{P_AH_P} = \frac{\text{dist}(R_a,BC)}{\text{dist}(P_A,P_BP_C)} = \frac{R_aT_a}{R_aA}, $$hence $ \triangle P_AH_AH_P, $ $ \triangle R_aT_aA $ are homothetic $ \Longrightarrow $ $ AT_a $ is parallel to the Steiner line $ H_AH_P $ of the complete quadrilateral $ \mathcal{Q} $ formed by $ \triangle P_AP_BP_C $ and $ BC. $

Let $ \triangle P_aP_bP_c $ be the pedal triangle of $ P $ WRT $ \triangle ABC. $ Let $ A^*, $ $ B^*, $ $ C^* $ be the isotomic conjugate of $ A, $ $ B, $ $ C $ WRT $ (P_B,P_C), $ $ (P_C,P_A), $ $ (P_A,P_B), $ respectively. From $ P_AB^* $ $ \stackrel{\parallel}{=} $ $ BP_C $ $ \stackrel{\parallel}{=} $ $ AJ_c, $ $ P_AC^* $ $ \stackrel{\parallel}{=} $ $ CP_B $ $ \stackrel{\parallel}{=} $ $ AJ_b $ we get $ \triangle AJ_bJ_c $ and $ \triangle P_AC^*B^* $ are congruent and homothetic, so $ J_bJ_c $ $ \stackrel{\parallel}{=} $ $ B^*C^* $ $ \Longrightarrow $ $ J_bJ_c $ is parallel to the Newton line of $ \mathcal{Q}, $ hence $ AT_a $ $ \perp $ $ J_bJ_c. $

Let the perpendicular from $ P_a $ to $ J_bJ_c $ cuts the A-altitude of $ \triangle ABC $ at $ S_a $ and let $ U $ $ \equiv $ $ PP_a $ $ \cap $ $ AT_a. $ Since $$ \frac{UP}{AP} = \frac{T_aR_a}{AR_a} = \frac{\text{dist}(R_a,BC)}{\text{dist}(P_A,P_BP_C)} = \frac{BC}{P_BP_C} = \frac{QQ_a}{AP}, $$so $ AS_a $ $ = $ $ PP_a $ $ + $ $ QQ_a. $ Similarly, we can prove $ Q_aS_a $ $ \perp $ $ K_bK_c, $ so notice the intersection of $ J_bJ_c, $ $ K_bK_c $ is the orthocenter of $ \triangle P_aQ_aS_a $ we conclude that the intersection of $ J_bJ_c $ and $ K_bK_c $ lies on the A-altitude of $ \triangle ABC. $ $ \blacksquare $

From the proof above we get the following corollaries :

Corollary 3.1 : $ \triangle T_aT_bT_c $ is the cevian triangle of $ T $ WRT $ \triangle ABC. $

Corollary 3.2 : $ \triangle J_aJ_bJ_c $ and $ \triangle A^*B^*C^* $ are congruent and homothetic.
____________________________________________________________
Property 4 : $ J_bK_c $ $ \parallel $ $ J_cK_b, $ $ J_cK_a $ $ \parallel $ $ J_aK_c, $ $ J_aK_b $ $ \parallel $ $ J_bK_a. $

Proof : Let $ AP $ cuts $ \odot (ABC) $ again at $ A_P $ and $ A_P^* $ be the projection of $ A_P $ on $ BC. $ Note that $ \tfrac{AP}{PA_P} $ $ = $ $ \tfrac{\text{dist}(Q,BC)}{\text{dist}(A_P,BC)} $ (See here (Lemma at post #4) or here (Lemma)), so we get $$\frac{PU}{A_PA_P^*}=\frac{\text{dist}(Q,BC)}{\text{dist}(A_P,BC)}=\frac{AP}{PA_P} \Longrightarrow PA_P^*\parallel AU \parallel P_aS_a. $$Analogously, if $ AQ $ cuts $ \odot (ABC) $ again at $ A_Q $ and $ A_Q^* $ is the projection of $ A_Q $ on $ BC, $ then $ QA_Q^* $ $ \parallel $ $ Q_aS_a. $ Let $ V_a $ (on the A-altitude of $ \triangle ABC $) be the intersection of $ J_bJ_c $ and $ K_bK_c. $ Let $ \infty_{\varsigma} $ be the point at infinity with direction $ \varsigma . $ Since $$ A(J_b,J_c; V_a,\infty_{ \parallel J_bJ_c}) = P(C,B;\infty_{ \parallel BC},A_P^*) = Q(B,C;\infty_{ \parallel BC},A_Q^*) = A(K_c,K_b;V_a,\infty_{ \parallel K_bK_c}), $$so we conclude that $ \tfrac{J_bV_a}{J_cV_a} $ $ = $ $ \tfrac{K_cV_a}{K_bV_a} $ $ \Longrightarrow $ $ J_bK_c $ $ \parallel $ $ J_cK_b. $ $ \blacksquare $
____________________________________________________________
Property 5 : $ \triangle J_aJ_bJ_c $ and $ \triangle K_aK_bK_c $ are cyclologic.

Proof : Let $ K $ be the second intersection of $ \odot (J_bK_cK_a) $ and $ \odot (J_cK_aK_b). $ Since $$ \measuredangle K_bKK_c = \measuredangle K_bKK_a + \measuredangle K_aKK_c = \measuredangle K_bJ_cK_a + \measuredangle K_aJ_bK_c = \measuredangle J_bK_cJ_a + \measuredangle J_aK_bJ_c = \measuredangle K_bJ_aK_c, $$so $ K $ lies on $ \odot (J_aK_bK_c). $ i.e. $ \odot (J_aK_bK_c), $ $ \odot (J_bK_cK_a), $ $ \odot (J_cK_aK_b) $ are concurrent at $ K. $

Analogously, we can prove $ \odot (K_aJ_bJ_c), $ $ \odot (K_bJ_cJ_a), $ $ \odot (K_cJ_aJ_b) $ are concurrent at $ J. $ $ \blacksquare $
____________________________________________________________
Property 6 : Let $ X_a $ $ \equiv $ $ P_bP_c $ $ \cap $ $ Q_bQ_c, $ $ X_b $ $ \equiv $ $ P_cP_a $ $ \cap $ $ Q_cQ_a, $ $ X_c $ $ \equiv $ $ P_aP_b $ $ \cap $ $ Q_aQ_b. $ Then $ (J_a,K_a), $ $ (J_b,K_b), $ $ (J_c,K_c) $ lie on $ X_bX_c, $ $ X_cX_a, $ $ X_aX_b, $ respectively.

Proof : It is well-known that $ AX_a $ $ \parallel $ $ BX_b $ $ \parallel $ $ CX_c $ ($\perp PQ$), so from Pappus's theorem for $ \overline{Q_a B C}, $ $ \overline{\infty_{\perp PQ} \infty_{\perp BP} \infty_{\perp CP}} $ $ \Longrightarrow $ $ J_a, $ $ X_b, $ $ X_c $ are collinear. Similarly, we can prove $ K_a $ $ \in $ $ X_bX_c, $ so $ J_a, $ $ K_a, $ $ X_b, $ $ X_c $ are collinear. $ \blacksquare $
____________________________________________________________
$ (\spadesuit) $ Before stating property 7, we recall following two lemmas.

Lemma 1 : Given a hexagon $ A_1B_2C_1A_2B_1C_2 $ s.t. $ B_2C_1 $ $ \parallel $ $ B_1C_2, $ $ C_2A_1 $ $ \parallel $ $ C_1A_2, $ $ A_2B_1 $ $ \parallel $ $ A_1B_2. $ Let $ X_1 $ be the intersection of $ \odot (A_2B_1C_1), $ $ \odot (A_1B_2C_1), $ $ \odot (A_1B_1C_2) $ and $ X_2 $ be the intersection of $ \odot (A_1B_2C_2), $ $ \odot (A_2B_1C_2), $ $ \odot (A_2B_2C_1). $ Then $$ A_1X_1 \parallel A_2X_2, B_1X_1 \parallel B_2X_2, C_1X_1 \parallel C_2X_2. $$Proof : Let $ D_1 $ $ \in $ $ \odot (A_2B_1C_1) $ be the point s.t. $ \measuredangle D_1B_1C_1 $ $ = $ $ \measuredangle A_2B_1C_2, $ $ \measuredangle D_1C_1B_1 $ $ = $ $ \measuredangle A_2C_1B_2 $ and $ D_2 $ $ \in $ $ \odot (A_1B_2C_2) $ be the point s.t. $ \measuredangle D_2B_2C_2 $ $ = $ $ \measuredangle A_1B_2C_1, $ $ \measuredangle D_2C_2B_2 $ $ = $ $ \measuredangle A_1C_2B_1. $ From $ \measuredangle D_1X_1B_1 $ $ = $ $ \measuredangle D_1C_1B_1 $ $ = $ $ \measuredangle A_2C_1B_2 $ $ = $ $ \measuredangle A_1C_2B_1 $ $ = $ $ \measuredangle A_1X_1B_1 $ $ \Longrightarrow $ $ A_1 , $ $ D_1 , $ $ X_1 $ are collinear. Similarly, we can prove $ A_2, $ $ D_2, $ $ X_2 $ are collinear.

Since $ \triangle B_1C_1D_1 $ $ \stackrel{+}{\sim} $ $ \triangle B_2C_2D_2, $ so notice $ \measuredangle A_2B_1D_1 $ $ = $ $ \measuredangle B_2C_1B_1, $ $ \measuredangle A_1B_2D_2 $ $ = $ $ \measuredangle C_1B_2C_2 $ we get $$ \frac{A_1D_2}{A_2D_1} = \frac{B_2C_2}{B_1C_1} \cdot \frac{ \sin \angle C_1B_2C_2}{\sin \angle B_2C_1B_1} =  \frac  {B_2C_2}{B_1C_1} \cdot \frac{B_1C_1}{B_2C_2} = 1. $$Combining $ \measuredangle C_2A_1D_2 $ $ = $ $ \measuredangle C_2B_2D_2 $ $ = $ $ \measuredangle C_1B_1D_1 $ $ = $ $ \measuredangle C_1A_2D_1 $ we get $ A_1D_2 $ $ \stackrel{\parallel}{=} $ $ A_2D_1 $ $\Longrightarrow $ $ A_1X_1 $ $ \parallel $ $ A_2X_2. $

Lemma 2 (well-known) : Given two (not homothetic) triangles $ \triangle A_1B_1C_1, $ $ \triangle A_2B_2C_2 $. If $ L $ is a point s.t. the parallel from $ A_2, $ $ B_2, $ $ C_2 $ to $ A_1L, $ $ B_1L, $ $ C_1L $, resp. are concurrent, then $ L $ lies on a circumconic of $ \triangle A_1B_1C_1 $ or the line at infinity.
____________________________________________________________
Property 7 : $ J, $ $ K, $ $ J_a, $ $ K_a, $ $ J_b, $ $ K_b, $ $ J_c, $ $ K_c, $ $ P, $ $ Q $ lie on a conic.

Proof : From Lemma 1 $ \Longrightarrow $ $ JJ_a $ $ \parallel $ $ KK_a, $ $ JJ_b $ $ \parallel $ $ KK_b, $ $ JJ_c $ $ \parallel $ $ KK_c, $ so from Lemma 2 we get the conclusion. $ \blacksquare $
1 reply
TelvCohl
Jun 4, 2016
foolish07
Aug 28, 2024
Properties related to the orthocenter of BPC, CPA, APB
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2311 posts
#1 • 53 Y
Y by baopbc, cjquines0, mineiraojose, hoangA1K44PBC, ThE-dArK-lOrD, GoJensenOrGoHome, mihajlon, aopser123, Scorpion.k48, A-B-C, Ankoganit, buratinogigle, langkhach11112, wu2481632, Lin_yangyuan, atmchallenge, rkm0959, baladin, champion999, Akatsuki1010, AlastorMoody, enhanced, Pluto1708, Supercali, Math5000, AmirKhusrau, amar_04, 62861, nguyendangkhoa17112003, Kagebaka, hsiangshen, Rg230403, Kanep, mijail, 606234, Atpar, Modesti, DanDumitrescu, centslordm, Tafi_ak, SerdarBozdag, Dr_Vex, David-Vieta, Adventure10, math_comb01, Parsia--, GioOrnikapa, VIATON, ehuseyinyigit, onyqz, OronSH, MS_asdfgzxcvb, wizixez
In this topic, I'll prove some properties related to the orthocenter $ J_a, $ $ J_b, $ $ J_c $ of $ \triangle BPC, $ $ \triangle CPA, $ $ \triangle APB, $ respectively (where $ P $ is an arbitrary point). Note that all symbols in this post bear the same meaning (except $ (\spadesuit) $).

Property 1 : Let $ Q $ be the isogonal conjugate of $ P $ WRT $ \triangle ABC $ and let $ \triangle Q_aQ_bQ_c $ be its pedal triangle WRT $ \triangle ABC. $ Then $ \triangle Q_aQ_bQ_c $ is inscribed in $ \triangle J_aJ_bJ_c $ (i.e. $ Q_a, $ $ Q_b, $ $ Q_c $ lies on $ J_bJ_c, $ $ J_cJ_a, $ $ J_aJ_b, $ respectively.).

Proof : Let $ \triangle P_AP_BP_C $ be the antipedal triangle of $ P $ WRT $ \triangle ABC. $ Since $ A, $ $ C, $ $ P, $ $ P_B $ lie on a circle with diameter $ PP_B, $ so $ \measuredangle PP_BP_C $ $ = $ $ \measuredangle PCA $ $ = $ $ \measuredangle BCQ. $ Similarly, we can prove $ \measuredangle PP_CP_B $ $ = $ $ \measuredangle CBQ, $ so we get $ \triangle PP_BP_C $ $ \cup $ $ A $ $ \stackrel{-}{\sim} $ $ \triangle QCB $ $ \cup $ $ Q_a. $ Combining $ BJ_c $ $ \stackrel{\parallel}{=} $ $ P_CA, $ $ CJ_b $ $ \stackrel{\parallel}{=} $ $ P_BA $ $ \Longrightarrow $ $ \tfrac{BQ_a}{CQ_a} $ $ = $ $ \tfrac{BJ_c}{CJ_b}. $ i.e. $ Q_a $ $ \in $ $ J_bJ_c. $ $ \blacksquare $
____________________________________________________________
Property 2 : Let $ H_P $ be the orthocenter of $ \triangle P_AP_BP_C $ and let $ M $ be the midpoint of $ PH_P. $ Then the anticomplement $ T $ of $ M $ WRT $ \triangle ABC $ is the orthocenter of $ \triangle AJ_bJ_c, $ $ \triangle BJ_cJ_a, $ $ \triangle CJ_aJ_b. $

Proof : Let $ G $ be the centroid of $ \triangle ABC. $ Clearly, $ G $ is the centroid of $ \triangle PTH_P, $ so the midpoint of $ TH_P $ is the complement of $ P $ WRT $ \triangle ABC. $ Notice $ J_a $ is the reflection of $ P_A $ in the midpoint of $ BC $ we get $ J_aT $ $ \parallel $ $ P_AH_P $ $ \Longrightarrow $ $ J_aT $ $ \parallel $ $ AP. $ Analogously, we can prove $ J_bT $ $ \parallel $ $ BP $ and $ J_cT $ $ \parallel $ $ CP, $ so $ T $ is the orthocenter of $ \triangle AJ_bJ_c, $ $ \triangle BJ_cJ_a, $ $ \triangle CJ_aJ_b. $ $ \blacksquare $
____________________________________________________________
Property 3 : Let $ K_a, $ $ K_b, $ $ K_c $ be the orthocenter of $ \triangle BQC, $ $ \triangle CQA, $ $ \triangle AQB, $ respectively. Then the A-altitude of $ \triangle ABC, $ $ J_bJ_c, $ $ K_bK_c $ are concurrent (similar for $ (J_cJ_a , K_cK_a) $ and $ (J_aJ_b , K_aK_b) $).

Proof : Let $ AP $ cuts $ \odot (BPC) $ at $ R_a $ and let $ T_a $ be the projection of $ R_a $ on $ BC $ (define $ R_b, $ $ R_c, $ $ T_b, $ $ T_c $ similarly). Let $ H_A, $ $ H_a $ be the orthocenter of $ \triangle P_ABC, $ $ \triangle R_aBC, $ respectively. From $ \measuredangle R_aBC $ $ = $ $ \measuredangle R_aPC $ $ = $ $ \measuredangle P_CP_BP_A, $ $ \measuredangle R_aCB $ $ = $ $ \measuredangle R_aPB $ $ = $ $ \measuredangle P_BP_CP_A $ $ \Longrightarrow $ $ \triangle R_aBC $ $ \cup $ $ H_a $ $ \stackrel{-}{\sim} $ $ \triangle P_AP_BP_C $ $ \cup $ $ H_P, $ so notice $ P_AH_A $ $ \stackrel{\parallel}{=} $ $ R_aH_a $ we get $$ \frac{P_AH_A}{P_AH_P} = \frac{\text{dist}(R_a,BC)}{\text{dist}(P_A,P_BP_C)} = \frac{R_aT_a}{R_aA}, $$hence $ \triangle P_AH_AH_P, $ $ \triangle R_aT_aA $ are homothetic $ \Longrightarrow $ $ AT_a $ is parallel to the Steiner line $ H_AH_P $ of the complete quadrilateral $ \mathcal{Q} $ formed by $ \triangle P_AP_BP_C $ and $ BC. $

Let $ \triangle P_aP_bP_c $ be the pedal triangle of $ P $ WRT $ \triangle ABC. $ Let $ A^*, $ $ B^*, $ $ C^* $ be the isotomic conjugate of $ A, $ $ B, $ $ C $ WRT $ (P_B,P_C), $ $ (P_C,P_A), $ $ (P_A,P_B), $ respectively. From $ P_AB^* $ $ \stackrel{\parallel}{=} $ $ BP_C $ $ \stackrel{\parallel}{=} $ $ AJ_c, $ $ P_AC^* $ $ \stackrel{\parallel}{=} $ $ CP_B $ $ \stackrel{\parallel}{=} $ $ AJ_b $ we get $ \triangle AJ_bJ_c $ and $ \triangle P_AC^*B^* $ are congruent and homothetic, so $ J_bJ_c $ $ \stackrel{\parallel}{=} $ $ B^*C^* $ $ \Longrightarrow $ $ J_bJ_c $ is parallel to the Newton line of $ \mathcal{Q}, $ hence $ AT_a $ $ \perp $ $ J_bJ_c. $

Let the perpendicular from $ P_a $ to $ J_bJ_c $ cuts the A-altitude of $ \triangle ABC $ at $ S_a $ and let $ U $ $ \equiv $ $ PP_a $ $ \cap $ $ AT_a. $ Since $$ \frac{UP}{AP} = \frac{T_aR_a}{AR_a} = \frac{\text{dist}(R_a,BC)}{\text{dist}(P_A,P_BP_C)} = \frac{BC}{P_BP_C} = \frac{QQ_a}{AP}, $$so $ AS_a $ $ = $ $ PP_a $ $ + $ $ QQ_a. $ Similarly, we can prove $ Q_aS_a $ $ \perp $ $ K_bK_c, $ so notice the intersection of $ J_bJ_c, $ $ K_bK_c $ is the orthocenter of $ \triangle P_aQ_aS_a $ we conclude that the intersection of $ J_bJ_c $ and $ K_bK_c $ lies on the A-altitude of $ \triangle ABC. $ $ \blacksquare $

From the proof above we get the following corollaries :

Corollary 3.1 : $ \triangle T_aT_bT_c $ is the cevian triangle of $ T $ WRT $ \triangle ABC. $

Corollary 3.2 : $ \triangle J_aJ_bJ_c $ and $ \triangle A^*B^*C^* $ are congruent and homothetic.
____________________________________________________________
Property 4 : $ J_bK_c $ $ \parallel $ $ J_cK_b, $ $ J_cK_a $ $ \parallel $ $ J_aK_c, $ $ J_aK_b $ $ \parallel $ $ J_bK_a. $

Proof : Let $ AP $ cuts $ \odot (ABC) $ again at $ A_P $ and $ A_P^* $ be the projection of $ A_P $ on $ BC. $ Note that $ \tfrac{AP}{PA_P} $ $ = $ $ \tfrac{\text{dist}(Q,BC)}{\text{dist}(A_P,BC)} $ (See here (Lemma at post #4) or here (Lemma)), so we get $$\frac{PU}{A_PA_P^*}=\frac{\text{dist}(Q,BC)}{\text{dist}(A_P,BC)}=\frac{AP}{PA_P} \Longrightarrow PA_P^*\parallel AU \parallel P_aS_a. $$Analogously, if $ AQ $ cuts $ \odot (ABC) $ again at $ A_Q $ and $ A_Q^* $ is the projection of $ A_Q $ on $ BC, $ then $ QA_Q^* $ $ \parallel $ $ Q_aS_a. $ Let $ V_a $ (on the A-altitude of $ \triangle ABC $) be the intersection of $ J_bJ_c $ and $ K_bK_c. $ Let $ \infty_{\varsigma} $ be the point at infinity with direction $ \varsigma . $ Since $$ A(J_b,J_c; V_a,\infty_{ \parallel J_bJ_c}) = P(C,B;\infty_{ \parallel BC},A_P^*) = Q(B,C;\infty_{ \parallel BC},A_Q^*) = A(K_c,K_b;V_a,\infty_{ \parallel K_bK_c}), $$so we conclude that $ \tfrac{J_bV_a}{J_cV_a} $ $ = $ $ \tfrac{K_cV_a}{K_bV_a} $ $ \Longrightarrow $ $ J_bK_c $ $ \parallel $ $ J_cK_b. $ $ \blacksquare $
____________________________________________________________
Property 5 : $ \triangle J_aJ_bJ_c $ and $ \triangle K_aK_bK_c $ are cyclologic.

Proof : Let $ K $ be the second intersection of $ \odot (J_bK_cK_a) $ and $ \odot (J_cK_aK_b). $ Since $$ \measuredangle K_bKK_c = \measuredangle K_bKK_a + \measuredangle K_aKK_c = \measuredangle K_bJ_cK_a + \measuredangle K_aJ_bK_c = \measuredangle J_bK_cJ_a + \measuredangle J_aK_bJ_c = \measuredangle K_bJ_aK_c, $$so $ K $ lies on $ \odot (J_aK_bK_c). $ i.e. $ \odot (J_aK_bK_c), $ $ \odot (J_bK_cK_a), $ $ \odot (J_cK_aK_b) $ are concurrent at $ K. $

Analogously, we can prove $ \odot (K_aJ_bJ_c), $ $ \odot (K_bJ_cJ_a), $ $ \odot (K_cJ_aJ_b) $ are concurrent at $ J. $ $ \blacksquare $
____________________________________________________________
Property 6 : Let $ X_a $ $ \equiv $ $ P_bP_c $ $ \cap $ $ Q_bQ_c, $ $ X_b $ $ \equiv $ $ P_cP_a $ $ \cap $ $ Q_cQ_a, $ $ X_c $ $ \equiv $ $ P_aP_b $ $ \cap $ $ Q_aQ_b. $ Then $ (J_a,K_a), $ $ (J_b,K_b), $ $ (J_c,K_c) $ lie on $ X_bX_c, $ $ X_cX_a, $ $ X_aX_b, $ respectively.

Proof : It is well-known that $ AX_a $ $ \parallel $ $ BX_b $ $ \parallel $ $ CX_c $ ($\perp PQ$), so from Pappus's theorem for $ \overline{Q_a B C}, $ $ \overline{\infty_{\perp PQ} \infty_{\perp BP} \infty_{\perp CP}} $ $ \Longrightarrow $ $ J_a, $ $ X_b, $ $ X_c $ are collinear. Similarly, we can prove $ K_a $ $ \in $ $ X_bX_c, $ so $ J_a, $ $ K_a, $ $ X_b, $ $ X_c $ are collinear. $ \blacksquare $
____________________________________________________________
$ (\spadesuit) $ Before stating property 7, we recall following two lemmas.

Lemma 1 : Given a hexagon $ A_1B_2C_1A_2B_1C_2 $ s.t. $ B_2C_1 $ $ \parallel $ $ B_1C_2, $ $ C_2A_1 $ $ \parallel $ $ C_1A_2, $ $ A_2B_1 $ $ \parallel $ $ A_1B_2. $ Let $ X_1 $ be the intersection of $ \odot (A_2B_1C_1), $ $ \odot (A_1B_2C_1), $ $ \odot (A_1B_1C_2) $ and $ X_2 $ be the intersection of $ \odot (A_1B_2C_2), $ $ \odot (A_2B_1C_2), $ $ \odot (A_2B_2C_1). $ Then $$ A_1X_1 \parallel A_2X_2, B_1X_1 \parallel B_2X_2, C_1X_1 \parallel C_2X_2. $$Proof : Let $ D_1 $ $ \in $ $ \odot (A_2B_1C_1) $ be the point s.t. $ \measuredangle D_1B_1C_1 $ $ = $ $ \measuredangle A_2B_1C_2, $ $ \measuredangle D_1C_1B_1 $ $ = $ $ \measuredangle A_2C_1B_2 $ and $ D_2 $ $ \in $ $ \odot (A_1B_2C_2) $ be the point s.t. $ \measuredangle D_2B_2C_2 $ $ = $ $ \measuredangle A_1B_2C_1, $ $ \measuredangle D_2C_2B_2 $ $ = $ $ \measuredangle A_1C_2B_1. $ From $ \measuredangle D_1X_1B_1 $ $ = $ $ \measuredangle D_1C_1B_1 $ $ = $ $ \measuredangle A_2C_1B_2 $ $ = $ $ \measuredangle A_1C_2B_1 $ $ = $ $ \measuredangle A_1X_1B_1 $ $ \Longrightarrow $ $ A_1 , $ $ D_1 , $ $ X_1 $ are collinear. Similarly, we can prove $ A_2, $ $ D_2, $ $ X_2 $ are collinear.

Since $ \triangle B_1C_1D_1 $ $ \stackrel{+}{\sim} $ $ \triangle B_2C_2D_2, $ so notice $ \measuredangle A_2B_1D_1 $ $ = $ $ \measuredangle B_2C_1B_1, $ $ \measuredangle A_1B_2D_2 $ $ = $ $ \measuredangle C_1B_2C_2 $ we get $$ \frac{A_1D_2}{A_2D_1} = \frac{B_2C_2}{B_1C_1} \cdot \frac{ \sin \angle C_1B_2C_2}{\sin \angle B_2C_1B_1} =  \frac  {B_2C_2}{B_1C_1} \cdot \frac{B_1C_1}{B_2C_2} = 1. $$Combining $ \measuredangle C_2A_1D_2 $ $ = $ $ \measuredangle C_2B_2D_2 $ $ = $ $ \measuredangle C_1B_1D_1 $ $ = $ $ \measuredangle C_1A_2D_1 $ we get $ A_1D_2 $ $ \stackrel{\parallel}{=} $ $ A_2D_1 $ $\Longrightarrow $ $ A_1X_1 $ $ \parallel $ $ A_2X_2. $

Lemma 2 (well-known) : Given two (not homothetic) triangles $ \triangle A_1B_1C_1, $ $ \triangle A_2B_2C_2 $. If $ L $ is a point s.t. the parallel from $ A_2, $ $ B_2, $ $ C_2 $ to $ A_1L, $ $ B_1L, $ $ C_1L $, resp. are concurrent, then $ L $ lies on a circumconic of $ \triangle A_1B_1C_1 $ or the line at infinity.
____________________________________________________________
Property 7 : $ J, $ $ K, $ $ J_a, $ $ K_a, $ $ J_b, $ $ K_b, $ $ J_c, $ $ K_c, $ $ P, $ $ Q $ lie on a conic.

Proof : From Lemma 1 $ \Longrightarrow $ $ JJ_a $ $ \parallel $ $ KK_a, $ $ JJ_b $ $ \parallel $ $ KK_b, $ $ JJ_c $ $ \parallel $ $ KK_c, $ so from Lemma 2 we get the conclusion. $ \blacksquare $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
foolish07
24 posts
#2
Y by
Cool properties !
Z K Y
N Quick Reply
G
H
=
a