ka April Highlights and 2025 AoPS Online Class Information
jlacosta0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.
WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.
Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29
Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Intermediate: Grades 8-12
Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Let be a point on a circle , and let be a point distinct from on the tangent at to . Let be a point not on such that the line segment meets at two distinct points. Let be the circle touching at and touching at a point on the opposite side of from . Prove that the circumcentre of triangle lies on the circumcircle of triangle .
This problem has unintended solution, found by almost all who solved it :(
mshtand15
N25 minutes ago
by iliya8788
Source: Ukrainian Mathematical Olympiad 2025. Day 2, Problem 11.7
Given a triangle , an arbitrary point is chosen on the side . In triangles and , the angle bisectors and are drawn, respectively. The point is the circumcenter of . Prove that the second intersection point of the circumcircles of triangles and lies on the line .
is a quadrilateral such that is not parallel to , and is not parallel to . Variable points are taken on respectively so that is a parallelogram. Find the locus of its center.
is a quadrilateral such that is not parallel to , and is not parallel to . Variable points are taken on respectively so that is a parallelogram. Find the locus of its center.
It is easy to construct a parallelogram as the problem states, beginning from an arbitrary point on the side-segment
Through the point we draw two lines parallel to which intersect the side-segments of the given quadrilateral at points respectively.
If now, is the point on such that it is easy to show that from
In our problem now, if we consider the non-convex quadrilateral it is easy to show that the midpoint of as the center of the parallelogram lies on the segment where are the midpoints of respectively,
as a direct application of the ERIQ theorem ( = Equal Ratios In Quadrilateral ), because of and
Hence, the wanted locus is the segment and the solution is completed.
Kostas Vittas.
PS. When the point is taken outwardly to the side-segment then, all the vertices of the parallelogram are also outwardly to the side-segments of and in this general case, we can say that the locus of is the line segment
PS. When the point is taken outwardly to the side-segment then, all the vertices of the parallelogram are also outwardly to the side-segments of and in this general case, we can say that the locus of is the line segment
See the schema t=134116(a).
But, we can easy to construct a parallelogram as the problem states, without and as it seems in the schema t=134116(b).
In this general case, the problem has a meaning only when the points lie on the side-segments of and then, the wanted locus is the area of the parallelogram with and including its side-segments.
I am surprised because such that problem was a contest problem and I wonder about its official solution.