Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Functional Geometry
GreekIdiot   2
N 4 minutes ago by Double07
Source: BMO 2024 SL G7
Let $f: \pi \to \mathbb R$ be a function from the Euclidean plane to the real numbers such that $f(A)+f(B)+f(C)=f(O)+f(G)+f(H)$ for any acute triangle $\Delta ABC$ with circumcenter $O$, centroid $G$ and orthocenter $H$. Prove that $f$ is constant.
2 replies
GreekIdiot
Apr 27, 2025
Double07
4 minutes ago
Right-angled triangle if circumcentre is on circle
liberator   78
N 21 minutes ago by bin_sherlo
Source: IMO 2013 Problem 3
Let the excircle of triangle $ABC$ opposite the vertex $A$ be tangent to the side $BC$ at the point $A_1$. Define the points $B_1$ on $CA$ and $C_1$ on $AB$ analogously, using the excircles opposite $B$ and $C$, respectively. Suppose that the circumcentre of triangle $A_1B_1C_1$ lies on the circumcircle of triangle $ABC$. Prove that triangle $ABC$ is right-angled.

Proposed by Alexander A. Polyansky, Russia
78 replies
liberator
Jan 4, 2016
bin_sherlo
21 minutes ago
af(a)+bf(b)+2ab=x^2 for all natural a, b - show that f(a)=a
shoki   25
N 28 minutes ago by ravengsd
Source: Iran TST 2011 - Day 4 - Problem 3
Suppose that $f : \mathbb{N} \rightarrow \mathbb{N}$ is a function for which the expression $af(a)+bf(b)+2ab$ for all $a,b \in \mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a \in \mathbb{N}$.
25 replies
shoki
May 14, 2011
ravengsd
28 minutes ago
Can you construct the incenter of a triangle ABC?
PennyLane_31   3
N 30 minutes ago by cj13609517288
Source: 2023 Girls in Mathematics Tournament- Level B, Problem 4
Given points $P$ and $Q$, Jaqueline has a ruler that allows tracing the line $PQ$. Jaqueline also has a special object that allows the construction of a circle of diameter $PQ$. Also, always when two circles (or a circle and a line, or two lines) intersect, she can mark the points of the intersection with a pencil and trace more lines and circles using these dispositives by the points marked. Initially, she has an acute scalene triangle $ABC$. Show that Jaqueline can construct the incenter of $ABC$.
3 replies
PennyLane_31
Oct 29, 2023
cj13609517288
30 minutes ago
No more topics!
Tangent in Isosceles Triangle
utkarshgupta   8
N Sep 24, 2021 by third_one_is_jerk
Source: All Russian Olympiad 2017 10.2 & 11.2
Let $ABC$ be an acute angled isosceles triangle with $AB=AC$ and circumcentre $O$. Lines $BO$ and $CO$ intersect $AC, AB$ respectively at $B', C'$. A straight line $l$ is drawn through $C'$ parallel to $AC$. Prove that the line $l$ is tangent to the circumcircle of $\triangle B'OC$.
8 replies
utkarshgupta
Jul 5, 2017
third_one_is_jerk
Sep 24, 2021
Tangent in Isosceles Triangle
G H J
G H BBookmark kLocked kLocked NReply
Source: All Russian Olympiad 2017 10.2 & 11.2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
utkarshgupta
2280 posts
#1 • 3 Y
Y by donotoven, Adventure10, Mango247
Let $ABC$ be an acute angled isosceles triangle with $AB=AC$ and circumcentre $O$. Lines $BO$ and $CO$ intersect $AC, AB$ respectively at $B', C'$. A straight line $l$ is drawn through $C'$ parallel to $AC$. Prove that the line $l$ is tangent to the circumcircle of $\triangle B'OC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lifeisgood03
388 posts
#3 • 4 Y
Y by AforApple, donotoven, Adventure10, Mango247
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(16cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -10.52022599245634, xmax = 3.116666969996216, ymin = -6.643620687561152, ymax = 5.644711030990139;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((-4.46,4.87)--(-8.018898138313551,-4.352121533938173), linewidth(2) + wrwrwr); 
draw((-8.018898138313551,-4.352121533938173)--(-0.39656158458527013,-4.141201351082423), linewidth(2) + wrwrwr); 
draw((-0.39656158458527013,-4.141201351082423)--(-4.46,4.87), linewidth(2) + wrwrwr); 
draw(circle((-4.31182143610446,-0.48494929298616624), 5.356999049584682), linewidth(2) + wrwrwr); 
draw((xmin, 1.0431864651323544*xmin + 4.013084469225557)--(xmax, 1.0431864651323544*xmax + 4.013084469225557), linewidth(2) + wrwrwr); /* line */
draw((xmin, -0.9338465891804261*xmin-4.511529034247363)--(xmax, -0.9338465891804261*xmax-4.511529034247363), linewidth(2) + wrwrwr); /* line */
draw((xmin, -2.2176296106514775*xmin-12.136973512968279)--(xmax, -2.2176296106514775*xmax-12.136973512968279), linewidth(2) + red); /* line */
draw((xmin, -36.13848826852717*xmin-156.30765767763117)--(xmax, -36.13848826852717*xmax-156.30765767763117), linewidth(2) + wrwrwr); /* line */
draw(circle((-1.617853472730625,-1.52457531984392), 2.887608987277295), linewidth(2) + linetype("4 4") + blue); 
 /* dots and labels */
dot((-4.46,4.87),dotstyle); 
label("$A$", (-4.406101811899774,5.001483198394216), NE * labelscalefactor); 
dot((-8.018898138313551,-4.352121533938173),dotstyle); 
label("$B$", (-7.970656050868851,-4.21811573548069), NE * labelscalefactor); 
dot((-0.39656158458527013,-4.141201351082423),dotstyle); 
label("$C$", (-0.3457261186380053,-4.003706457948716), NE * labelscalefactor); 
dot((-4.31182143610446,-0.48494929298616624),linewidth(4pt) + dotstyle); 
label("$O$", (-4.258695433596541,-0.37214931975089627), NE * labelscalefactor); 
dot((-2.770383953826538,1.123057425373856),linewidth(4pt) + dotstyle); 
label("$B'$", (-2.717628751335474,1.235920261738913), NE * labelscalefactor); 
dot((-5.939823436816552,1.0353548225577307),linewidth(4pt) + dotstyle); 
label("$C'$", (-5.880165594932099,1.142116202818674), NE * labelscalefactor); 
dot((-4.250207390643089,-2.7115877520684135),linewidth(4pt) + dotstyle); 
label("$X$", (-4.1916925343677995,-2.6100461539908806), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Let the intersection between $AO$ and $l$ be $X$. Since the triangle is isosceles, $XB'=XC'$, and $AB'=AC'$ so $AB'XC'$ is a rhombus.

Let $\angle BAC=\theta$.

Note that $\angle XOC=\theta$ and $\angle XB'C=180^{\circ}-XB'A=\theta$, so $OB'CX$ is a circle.

Now, $\angle C'XB'=\theta=\angle AOB'=\angle ACX$, so $C'X$, or $l$, is tangent to $(B'OC)$, as desired.
This post has been edited 1 time. Last edited by lifeisgood03, May 13, 2018, 6:38 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wizard_32
1566 posts
#4 • 5 Y
Y by socr4tes, donotoven, third_one_is_jerk, Adventure10, Mango247
We prove a stronger result, all because of the amazing symmetry!
utkarshgupta wrote:
Let $ABC$ be an acute-angled isosceles triangle with $AB=AC$ and circumcentre $O$. Lines $BO$ and $CO$ intersect $AC, AB$ respectively at $B', C'$. A straight line $l$ is drawn through $C'$ parallel to $AC$. Prove that the line $l$ is tangent to the circumcircle of $\triangle B'OC$.
Let $M$ be the second intersection on $\omega_1=\odot(B'OC)$ and $\omega_2=\odot(C'OB)$. We will show that $C'M$ is both tangent to $\omega_1$ and parallel to $AC$. Clearly, $A, O, M$ are collinear, as $A$ lies on the radical axis of $\omega_1, \omega_2$.

Note the perfect symmetry about $AM$. This yields $\angle C'MA=\angle AMB' \overset{\omega_1}{=} \angle OCB'=\angle OCA=\tfrac{\pi}{2}-\angle B=\angle CAO$, and so $C'M \parallel AC$. It suffices to show $C'M$ is tangent to $\omega_1$. This is further equivalent to $\angle B'CM=\angle B'MC'=2\left(\tfrac{\pi}{2}-\angle B\right)=\pi-2\angle B$. But this follows since $\angle B'CM \overset{\omega_1}{=} \pi-\angle B'OM=\pi-2\angle C=\pi-2\angle B$, as desired. $\square$

Comments:
In fact, $O$ is the circumcenter of $\triangle MB'C'$ also!
Proof: Since the sides of the triangle $MB'C'$ are respectively parallel to the sides of $\triangle ABC$, hence these triangles are homothetic. Also, since $O=AM' \cap CC' \cap BB'$, hence $O$ is the center of homothety. But $O$ is the circumcenter of $\triangle ABC$, and hence we get that $O$ is the circumcenter of $\triangle MB'C'$ as well. $\square$

[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -12.037904761904763, xmax = 12.651154471544714, ymin = -10.22185133565621, ymax = 7.429252032520318;  /* image dimensions */pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451);  /* draw figures */draw(circle((-2.78,-0.25), 6.440279497040482), linewidth(1) + wrwrwr); draw((-7.6796928721752185,-4.429738001161718)--(2.19671889463137,-4.337721742464758), linewidth(1) + wrwrwr); draw((2.19671889463137,-4.337721742464758)--(-2.84,6.19), linewidth(1) + wrwrwr); draw((-2.84,6.19)--(-7.6796928721752185,-4.429738001161718), linewidth(1) + wrwrwr); draw(circle((0.2521360268231692,-1.6318238373561076), 3.3321593603314583), linewidth(1) + wrwrwr); draw(circle((-5.785863644866286,-1.6880784926824097), 3.332159360331457), linewidth(1) + wrwrwr); draw((-7.6796928721752185,-4.429738001161718)--(-2.7537276180431176,-3.0699023300385186), linewidth(1) + wrwrwr); draw((-2.7537276180431176,-3.0699023300385186)--(2.19671889463137,-4.337721742464758), linewidth(1) + wrwrwr); draw((-2.78,-0.25)--(-2.7537276180431176,-3.0699023300385186), linewidth(1) + wrwrwr); draw((-4.959170994862998,1.539903115857993)--(-2.78,-0.25), linewidth(1) + wrwrwr); draw((-2.78,-0.25)--(-0.6345566231801201,1.5801945541034892), linewidth(1) + wrwrwr); draw((-2.78,-0.25)--(2.19671889463137,-4.337721742464758), linewidth(1) + wrwrwr); draw((-2.78,-0.25)--(-7.6796928721752185,-4.429738001161718), linewidth(1) + wrwrwr); draw((-4.959170994862998,1.539903115857993)--(-2.7537276180431176,-3.0699023300385186), linewidth(1) + wrwrwr); draw((-2.7537276180431176,-3.0699023300385186)--(-0.6345566231801201,1.5801945541034892), linewidth(1) + wrwrwr); draw((-4.959170994862998,1.539903115857993)--(-0.6345566231801201,1.5801945541034892), linewidth(1) + wrwrwr);  /* dots and labels */dot((-2.78,-0.25),dotstyle); label("$O$", (-3.1087990708478526,0.24395586527293572), NE * labelscalefactor); dot((-2.84,6.19),dotstyle); label("$A$", (-2.998740998838561,6.732202090592327), NE * labelscalefactor); dot((-7.6796928721752185,-4.429738001161718),dotstyle); label("$B$", (-8.392887340301976,-4.982734030197444), NE * labelscalefactor); dot((2.19671889463137,-4.337721742464758),linewidth(4pt) + dotstyle); label("$C$", (2.3102020905923332,-4.982734030197444), NE * labelscalefactor); dot((-0.6345566231801201,1.5801945541034892),linewidth(4pt) + dotstyle); label("$B'$", (-0.547823461091755,1.7629105691056872), NE * labelscalefactor); dot((-4.959170994862998,1.539903115857993),linewidth(4pt) + dotstyle); label("$C'$", (-5.652027874564461,1.9652799070847813), NE * labelscalefactor); label("$w_1$", (-2.3016910569105704,1.1108315911730513), NE * labelscalefactor,wrwrwr); label("$w_2$", (-7.968032520325204,1.4481138211382079), NE * labelscalefactor,wrwrwr); dot((-2.7537276180431176,-3.0699023300385186),linewidth(4pt) + dotstyle); label("$M$", (-3.186313588850175,-4.215858304297329), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);  /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RamtinVaziri
28 posts
#5 • 1 Y
Y by donotoven
First of all , forget about the tangents and the circles , draw a line parallel to $AB$ from $B'$ and a line parallel to $AC$ from $C'$ and let the lines intersect in a point $X$ , we make the following claim:
$ \text Claim $ : the point of tangency of $(B'OC)$ and parallel to $AC$ from $C'$ is $X$.
First , we’ll show that $X$ lies on both $(B'OC)$ and $(C'OB)$ . By symmetry we can just show that $X$ lies on $(B'OC)$ , note that because $ \angle C'BC = \angle B'CB = 90 - \frac{\angle A}{2} $ and $ \angle C'CB = \angle B'BC = 90 - \angle A $ , $\triangle C'BC = \triangle B'CB$ thus $C'B=B'C$ and $AC'=AB'$ and because $AB'XC'$ was a parallelogram , its a Rhombus. Now note that $ C'X = B'X$ , $C'B = B'C$ , $\angle BC'X = \angle CB'X = \angle A $ therefore $\triangle BXC' = \triangle CXB'$ and $XB = XC$ and so $X$ lies on the perpendicular bisector of $BC$ and so $A , O , X$ are collinear .
Now in order to prove that $B'OXC$ and $C'OXB$ are cyclic we should just show that $\angle B'CO = \angle B'XO$ .
Since $A , O , X$ are collinear , $\angle B'XO = \angle B'XA$ and since $B'X \parallel AB$ , $\angle B'XA = \angle OAB$ and because $OA = OB$ , $\angle OAB = \angle OBA = \angle OBC'$ and thus $B'OXC$ is cyclic , similarly $C'OXB$ is cyclic.
Now we just need to show that $C'X$ is tangent to $(B'OXC)$ which is equivalent to $ \angle OB'X = \angle OXC' $ , we knew that $B'X \parallel AB$ , so $\angle OB'X = \angle OBC'$ and because $C'OXB$ Is cyclic , $\angle C'BO = \angle C'XO$ therefore $\angle OB'X = \angle OBC' = \angle C'XO$ and we are Done :D .
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Math-Star.
4 posts
#6 • 1 Y
Y by donotoven
Let $AO$ intersect circle $B'OC$ at $K (K \ne B)$. Now we prove that $O$ is the circumcenter of $KB'C'$ and $C'K$ is tangent to circle $B'OC$
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = 9.965242981317132, xmax = 10.20565007198979, ymin = 2.638169113776028, ymax = 2.7699430538506142;  /* image dimensions */
pen ttqqqq = rgb(0.2,0.,0.); pen qqzzcc = rgb(0.,0.6,0.8); pen ffwwqq = rgb(1.,0.4,0.); pen dcrutc = rgb(0.8627450980392157,0.0784313725490196,0.23529411764705882); pen qqwuqq = rgb(0.,0.39215686274509803,0.); pen qqzzff = rgb(0.,0.6,1.); 

draw(arc((10.078328942637937,2.7122371116861053),0.00482099780760678,90.14209168102435,124.05721905955254)--(10.078328942637937,2.7122371116861053)--cycle, linewidth(0.8) + qqwuqq); 
draw(arc((10.078328942637937,2.7122371116861053),0.00482099780760678,56.22696430248275,90.14209168102435)--(10.078328942637937,2.7122371116861053)--cycle, linewidth(0.8) + qqwuqq); 
draw(arc((10.078328942637937,2.7122371116861053),0.00482099780760678,-89.8579083189641,-55.94278094055423)--(10.078328942637937,2.7122371116861053)--cycle, linewidth(0.8) + qqwuqq); 
draw(arc((10.088195589414552,2.726990747847996),0.00482099780760678,-106.81547200818294,-72.90034462975353)--(10.088195589414552,2.726990747847996)--cycle, linewidth(0.8) + qqwuqq); 
draw(arc((10.078211870773865,2.7594440270473353),0.00482099780760678,-89.85790831897565,-72.90034462978403)--(10.078211870773865,2.7594440270473353)--cycle, linewidth(0.8) + qqzzff); 
draw(arc((10.078211870773865,2.7594440270473353),0.00482099780760678,-106.81547200822092,-89.85790831897566)--(10.078211870773865,2.7594440270473353)--cycle, linewidth(0.8) + qqzzff); 
draw(arc((10.104765866731599,2.6731270668355864),0.00482099780760678,107.0996553702465,124.0572190594458)--(10.104765866731599,2.6731270668355864)--cycle, linewidth(0.8) + qqzzff); 
draw(arc((10.078372959084787,2.6944883494428242),0.00482099780760678,73.18452799181709,90.14209168103591)--(10.078372959084787,2.6944883494428242)--cycle, linewidth(0.8) + qqzzff); 
 /* draw figures */
draw((10.052086326228965,2.6729964230102516)--(10.078211870773865,2.7594440270473353), linewidth(0.4)); 
draw((10.078211870773865,2.7594440270473353)--(10.104765866731599,2.6731270668355864), linewidth(0.4)); 
draw((10.104765866731599,2.6731270668355864)--(10.052086326228965,2.6729964230102516), linewidth(0.4)); 
draw(circle((10.078328942637938,2.712237111686105), 0.047207060528524046), linewidth(0.4) + ttqqqq); 
draw(circle((10.107454822550814,2.7034349073733845), 0.03042689076232164), linewidth(0.4) + qqzzcc); 
draw((10.078211870773865,2.7594440270473353)--(10.078372959084787,2.6944883494428242), linewidth(0.4)); 
draw((10.078328942637937,2.7122371116861053)--(10.104765866731599,2.6731270668355864), linewidth(0.4)); 
draw((10.078372959084787,2.6944883494428242)--(10.088195589414552,2.726990747847996), linewidth(0.4)); 
draw((10.068389240444075,2.726941628642159)--(10.078328942637937,2.7122371116861053), linewidth(0.4) + ffwwqq); 
draw((10.078328942637937,2.7122371116861053)--(10.088195589414552,2.726990747847996), linewidth(0.4) + ffwwqq); 
draw(circle((10.078328942637937,2.7122371116861053), 0.01774881682299166), linewidth(0.4) + linetype("4 4") + dcrutc); 
 /* dots and labels */
dot((10.078211870773865,2.7594440270473353),linewidth(2.pt) + dotstyle); 
label("$A$", (10.078857829649733,2.7601403583084805), NE * labelscalefactor); 
dot((10.052086326228965,2.6729964230102516),linewidth(2.pt) + dotstyle); 
label("$B$", (10.052663741561735,2.673683797625398), NE * labelscalefactor); 
dot((10.104765866731599,2.6731270668355864),linewidth(2.pt) + dotstyle); 
label("$C$", (10.10537331759157,2.6738444975523183), NE * labelscalefactor); 
dot((10.078328942637937,2.7122371116861053),linewidth(2.pt) + dotstyle); 
label("$O$", (10.079500629357414,2.7116089803785717), NE * labelscalefactor); 
dot((10.088195589414552,2.726990747847996),linewidth(2.pt) + dotstyle); 
label("$B'$", (10.088821225118787,2.7276789730705944), NE * labelscalefactor); 
dot((10.068389240444075,2.726941628642159),linewidth(2.pt) + dotstyle); 
label("$C'$", (10.065841135569194,2.7288038725590362), NE * labelscalefactor); 
dot((10.078372959084787,2.6944883494428242),linewidth(2.pt) + dotstyle); 
label("$K$", (10.079018529576652,2.6950568879057886), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
$\textbf{Claim:  }$ $KO= OB'$.
$\textbf{Proof:   }$ Notice that, $\measuredangle CB'O =  \measuredangle CAO + \measuredangle OKB' $ , Now \[\measuredangle AOB' = \measuredangle COK = \measuredangle CB'K\]\[ \therefore \measuredangle KB'O =  \measuredangle B'AO =  \measuredangle OCB' =  \measuredangle OKB'\]. $  \blacksquare   $

Because of symmetry, $OB'= OC'$ . For the claim we get that $O $ is the circumcenter of $OC'B'$.
Since $K$ lies on the perpendicular bisector of $B'C'$, hence, \[ B'K = C'K \implies  \measuredangle  KB'O= \measuredangle  OKB' = \measuredangle  C'KO \].

So, $C'K$ is tangent to the circle $B'CO$. And we are done $\blacksquare$
This post has been edited 2 times. Last edited by Math-Star., Jul 6, 2021, 4:43 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MrOreoJuice
594 posts
#7 • 1 Y
Y by donotoven
Let $D = AO \cap l$.
$$\angle DC'C = \angle C'CA = \angle OCA = \angle OAC = \angle DAC$$So $DC'AC$ is an isosceles trapezium.
$$\angle OB'C = \angle OC'B = 180^\circ - \angle OC'A = 180^\circ - \angle ODC$$So $ODCB'$ is cyclic.
$$\angle OC'D = \angle OCB' = \angle OAC'$$So $(AOC')$ is tangent to $l$ at $C'$.
$$C'D^2 = DO \times DA = C'O \times C'C$$So $(OB'C)$ is tangent to $l$ at $D$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JAnatolGT_00
559 posts
#8
Y by
Let $A'=AO\cap \ell.$ Easy to note that trapezoid $AC'A'C$ is isosceles, so $$\angle C'A'O=\angle B'CO=\angle OAB'=\angle OAC'=\angle OCA',$$$$|A'O|=|OC'|=|OB'|.$$Hence $A'\in (B'OC),$ and $\ell$ tangent to $(B'OC)$ at $A'$. Done.
This post has been edited 2 times. Last edited by JAnatolGT_00, Aug 29, 2021, 7:54 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rafaello
1079 posts
#9
Y by
Let $D=AO\cap (B'OC)$. Note that $$\measuredangle DB'C=\measuredangle DOC=\measuredangle BOD=\measuredangle B'OA=\measuredangle B'OD=\measuredangle B'CD,$$thus $\triangle CDB'$ is isosceles. Now, $\measuredangle B'CD=\measuredangle DOC=2\measuredangle ACO$, hence $CO$ is the angle bisector of $\angle B'CD$, meaning $OC'=OB'=OD$.
Now, we conclude that $\measuredangle DC'O=\measuredangle ODC'=\measuredangle ACO=\measuredangle OCD$, therefore $C'D$ is parallel to $AC$ and $CD'$ is tangent to $(B'OC)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
third_one_is_jerk
36 posts
#10
Y by
For storage.

[asy]
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(7cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -1.879454953348385, xmax = 2.2140922767978015, ymin = -1.295154732330985, ymax = 1.168455284767441;  /* image dimensions */

 /* draw figures */
draw(circle((0,0), 1), linewidth(0.8)); 
draw((-0.6,-0.8)--(0.6,-0.8), linewidth(0.8)); 
draw((0,1)--(-0.6,-0.8), linewidth(0.8)); 
draw((0,1)--(0.6,-0.8), linewidth(0.8)); 
draw(circle((0.576923076923077,-0.19230769230769224), 0.6081303192631499), linewidth(0.8)); 
draw(circle((0,-0.3846153846153844), 0.72975638311578), linewidth(0.8)); 
draw((0,1)--(0,-0.3846153846153844), linewidth(0.8)); 
draw((-0.23076923076923078,0.3076923076923077)--(0,-0.3846153846153844), linewidth(0.8)); 
draw((-0.6,-0.8)--(0.23076923076923064,0.30769230769230765), linewidth(0.8)); 
draw((0.6,-0.8)--(-0.23076923076923078,0.3076923076923077), linewidth(0.8)); 
 /* dots and labels */
dot((-0.6,-0.8),dotstyle); 
label("$B$", (-0.6957464527251732,-0.9270225278324325), NE * labelscalefactor); 
dot((0.6,-0.8),dotstyle); 
label("$C$", (0.6082033177130376,-0.9296945560505436), NE * labelscalefactor); 
dot((0,1),linewidth(4pt) + dotstyle); 
label("$A$", (0.009668996856153977,1.021493732771331), NE * labelscalefactor); 
dot((0,0),dotstyle); 
label("$O$", (0.049184968717866,0), NE * labelscalefactor); 
dot((0.23076923076923064,0.30769230769230765),linewidth(4pt) + dotstyle); 
label("$B'$", (0.2094634236137075,0.3668468193341136), NE * labelscalefactor); 
dot((-0.23076923076923078,0.3076923076923077),linewidth(4pt) + dotstyle); 
label("$C'$", (-0.33502264328017634,0.3695188475522247), NE * labelscalefactor); 
dot((0,-0.3846153846153844),linewidth(4pt) + dotstyle); 
label("$X$", (0.05,-0.3813210817369919), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]

Let $X= \odot(OB'C) \cap OA.$ Notice that $X \in \odot (OC'B)$ as well. By spiral similarity lemma, we have $\triangle XBC' \overset{+}{\sim} \triangle XB'C$.But $\triangle XBC' \overset{-}{\sim} \triangle XCB'$ and $XC = XB$ by symmetry. Therefore, $X$ is the center of $\odot (BCB'C)$. Since $AO$ bisects $\overline{B'C'}$,
\begin{align*}
\angle C'XA = \frac{1}{2}\angle C'XB' =&\hspace{1mm} \angle C'BB' = \angle ABO = \angle OAB = \angle XAC \\
&\implies X \text{ lies on } l.
\end{align*}We are done if $\angle XB'O = \frac{\angle A}{2}.$ Indeed, by symmetry $XB'$ is parallel to $AB$ and $\angle XB'O = \angle XAB. \blacksquare $
This post has been edited 1 time. Last edited by third_one_is_jerk, Sep 24, 2021, 1:20 PM
Z K Y
N Quick Reply
G
H
=
a