Y by samrocksnature, Adventure10, Mango247
Consider a fixed regular
-gon of unit side. When a second regular
-gon of unit size rolls around the first one, one of its vertices successively pinpoints the vertices of a closed broken line
as in the figure.
![[asy]
int n=9;
draw(polygon(n));
for (int i = 0; i<n;++i) {
draw(reflect(dir(360*i/n + 90), dir(360*(i+1)/n + 90))*polygon(n), dashed+linewidth(0.4));
draw(reflect(dir(360*i/n + 90),dir(360*(i+1)/n + 90))*(0,1)--reflect(dir(360*(i-1)/n + 90),dir(360*i/n + 90))*(0,1), linewidth(1.2));
}
[/asy]](//latex.artofproblemsolving.com/d/a/4/da4418d91b2cde126bf559427bda331393273495.png)
Let
be the area of a regular
-gon of unit side, and let
be the area of a regular
-gon of unit circumradius. Prove that the area enclosed by
equals
.



![[asy]
int n=9;
draw(polygon(n));
for (int i = 0; i<n;++i) {
draw(reflect(dir(360*i/n + 90), dir(360*(i+1)/n + 90))*polygon(n), dashed+linewidth(0.4));
draw(reflect(dir(360*i/n + 90),dir(360*(i+1)/n + 90))*(0,1)--reflect(dir(360*(i-1)/n + 90),dir(360*i/n + 90))*(0,1), linewidth(1.2));
}
[/asy]](http://latex.artofproblemsolving.com/d/a/4/da4418d91b2cde126bf559427bda331393273495.png)
Let






This post has been edited 6 times. Last edited by Vrangr, Aug 3, 2018, 8:11 PM