Y by Adventure10
In triangle
is smaller than
. Point
lies on the (extended) line
(with
between
and
) such that
. Point
lies on the bisector of
such that
. Line segment
intersects line segment
in point
. Point
lies on line segment
such that
and
are parallel. Prove that
.
![[asy]
unitsize (1.5 cm);
real angleindegrees(pair A, pair B, pair C) {
real a, b, c;
a = abs(B - C);
b = abs(C - A);
c = abs(A - B);
return(aCos((a^2 + c^2 - b^2)/(2*a*c)));
};
pair A, B, C, D, E, F, G;
B = (0,0);
A = 2*dir(190);
D = 2*dir(310);
C = 1.5*dir(310 - 180);
E = extension(B, incenter(A,B,C), A, rotate(angleindegrees(A,C,B),A)*(B));
F = extension(B,E,A,C);
G = extension(E, E + D - B, A, D);
filldraw(anglemark(A,C,B,8),gray(0.8));
filldraw(anglemark(B,A,E,8),gray(0.8));
draw(C--A--B);
draw(E--A--D);
draw(interp(C,D,-0.1)--interp(C,D,1.1));
draw(interp(E,B,-0.2)--interp(E,B,1.2));
draw(E--G);
dot("$A$", A, SW);
dot("$B$", B, NE);
dot("$C$", C, NE);
dot("$D$", D, NE);
dot("$E$", E, N);
dot("$F$", F, N);
dot("$G$", G, SW);
[/asy]](//latex.artofproblemsolving.com/4/6/6/466c5309df1be1e493d3d04a4683cb9663c195bb.png)



















![[asy]
unitsize (1.5 cm);
real angleindegrees(pair A, pair B, pair C) {
real a, b, c;
a = abs(B - C);
b = abs(C - A);
c = abs(A - B);
return(aCos((a^2 + c^2 - b^2)/(2*a*c)));
};
pair A, B, C, D, E, F, G;
B = (0,0);
A = 2*dir(190);
D = 2*dir(310);
C = 1.5*dir(310 - 180);
E = extension(B, incenter(A,B,C), A, rotate(angleindegrees(A,C,B),A)*(B));
F = extension(B,E,A,C);
G = extension(E, E + D - B, A, D);
filldraw(anglemark(A,C,B,8),gray(0.8));
filldraw(anglemark(B,A,E,8),gray(0.8));
draw(C--A--B);
draw(E--A--D);
draw(interp(C,D,-0.1)--interp(C,D,1.1));
draw(interp(E,B,-0.2)--interp(E,B,1.2));
draw(E--G);
dot("$A$", A, SW);
dot("$B$", B, NE);
dot("$C$", C, NE);
dot("$D$", D, NE);
dot("$E$", E, N);
dot("$F$", F, N);
dot("$G$", G, SW);
[/asy]](http://latex.artofproblemsolving.com/4/6/6/466c5309df1be1e493d3d04a4683cb9663c195bb.png)
This post has been edited 2 times. Last edited by nsato, Feb 13, 2023, 9:07 PM