Y by Adventure10
Two circles
and
, both with radius
, touch each other externally.
Four circles
and
, all four with the same radius
, lie such that
externally touches on
and
,
externally touches on
and
,
externally touches on
and
,
externally touches on
and
.
Calculate the length of
![[asy]
unitsize(0.3 cm);
pair A, B, P, Q, R, S;
real r = (3 + sqrt(17))/2;
A = (-1,0);
B = (1,0);
P = intersectionpoint(arc(A,r + 1,0,180), arc(B,r + 1,0,180));
R = -P;
Q = (r + 2,0);
S = (-r - 2,0);
draw(Circle(A,1));
draw(Circle(B,1));
draw(Circle(P,r));
draw(Circle(Q,r));
draw(Circle(R,r));
draw(Circle(S,r));
label("$A$", A);
label("$B$", B);
label("$P$", P);
label("$Q$", Q);
label("$R$", R);
label("$S$", S);
[/asy]](//latex.artofproblemsolving.com/4/c/7/4c719a0b71a3d884107a1362a46ac582aab3c484.png)



Four circles















Calculate the length of

![[asy]
unitsize(0.3 cm);
pair A, B, P, Q, R, S;
real r = (3 + sqrt(17))/2;
A = (-1,0);
B = (1,0);
P = intersectionpoint(arc(A,r + 1,0,180), arc(B,r + 1,0,180));
R = -P;
Q = (r + 2,0);
S = (-r - 2,0);
draw(Circle(A,1));
draw(Circle(B,1));
draw(Circle(P,r));
draw(Circle(Q,r));
draw(Circle(R,r));
draw(Circle(S,r));
label("$A$", A);
label("$B$", B);
label("$P$", P);
label("$Q$", Q);
label("$R$", R);
label("$S$", S);
[/asy]](http://latex.artofproblemsolving.com/4/c/7/4c719a0b71a3d884107a1362a46ac582aab3c484.png)
This post has been edited 2 times. Last edited by nsato, Feb 14, 2023, 10:36 PM