Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
IMO 2010 Problem 5
mavropnevma   53
N 3 minutes ago by shanelin-sigma
Each of the six boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$, $B_6$ initially contains one coin. The following operations are allowed

Type 1) Choose a non-empty box $B_j$, $1\leq j \leq 5$, remove one coin from $B_j$ and add two coins to $B_{j+1}$;

Type 2) Choose a non-empty box $B_k$, $1\leq k \leq 4$, remove one coin from $B_k$ and swap the contents (maybe empty) of the boxes $B_{k+1}$ and $B_{k+2}$.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_1$, $B_2$, $B_3$, $B_4$, $B_5$ become empty, while box $B_6$ contains exactly $2010^{2010^{2010}}$ coins.

Proposed by Hans Zantema, Netherlands
53 replies
+1 w
mavropnevma
Jul 8, 2010
shanelin-sigma
3 minutes ago
a_n < b_n for large n
tastymath75025   11
N 24 minutes ago by torch
Source: 2017 ELMO Shortlist A1
Let $0<k<\frac{1}{2}$ be a real number and let $a_0, b_0$ be arbitrary real numbers in $(0,1)$. The sequences $(a_n)_{n\ge 0}$ and $(b_n)_{n\ge 0}$ are then defined recursively by

$$a_{n+1} = \dfrac{a_n+1}{2} \text{ and } b_{n+1} = b_n^k$$
for $n\ge 0$. Prove that $a_n<b_n$ for all sufficiently large $n$.

Proposed by Michael Ma
11 replies
1 viewing
tastymath75025
Jul 3, 2017
torch
24 minutes ago
primes,exponentials,factorials
skellyrah   4
N 41 minutes ago by aaravdodhia
find all primes p,q such that $$ \frac{p^q+q^p-p-q}{p!-q!} $$is a prime number
4 replies
skellyrah
6 hours ago
aaravdodhia
41 minutes ago
Special line through antipodal
Phorphyrion   9
N an hour ago by ihategeo_1969
Source: 2025 Israel TST Test 1 P2
Triangle $\triangle ABC$ is inscribed in circle $\Omega$. Let $I$ denote its incenter and $I_A$ its $A$-excenter. Let $N$ denote the midpoint of arc $BAC$. Line $NI_A$ meets $\Omega$ a second time at $T$. The perpendicular to $AI$ at $I$ meets sides $AC$ and $AB$ at $E$ and $F$ respectively. The circumcircle of $\triangle BFT$ meets $BI_A$ a second time at $P$, and the circumcircle of $\triangle CET$ meets $CI_A$ a second time at $Q$. Prove that $PQ$ passes through the antipodal to $A$ on $\Omega$.
9 replies
Phorphyrion
Oct 28, 2024
ihategeo_1969
an hour ago
Triangle form by perpendicular bisector
psi241   50
N 2 hours ago by Ilikeminecraft
Source: IMO Shortlist 2018 G5
Let $ABC$ be a triangle with circumcircle $\Omega$ and incentre $I$. A line $\ell$ intersects the lines $AI$, $BI$, and $CI$ at points $D$, $E$, and $F$, respectively, distinct from the points $A$, $B$, $C$, and $I$. The perpendicular bisectors $x$, $y$, and $z$ of the segments $AD$, $BE$, and $CF$, respectively determine a triangle $\Theta$. Show that the circumcircle of the triangle $\Theta$ is tangent to $\Omega$.
50 replies
psi241
Jul 17, 2019
Ilikeminecraft
2 hours ago
Sequence with infinite primes which we see again and again and again
Assassino9931   3
N 2 hours ago by grupyorum
Source: Balkan MO Shortlist 2024 N6
Let $c$ be a positive integer. Prove that there are infinitely many primes, each of which divides at least one term of the sequence $a_1 = c$, $a_{n+1} = a_n^3 + c$.
3 replies
Assassino9931
Apr 27, 2025
grupyorum
2 hours ago
Integer roots preserved under linear function of polynomial
alifenix-   23
N 2 hours ago by Mathandski
Source: USEMO 2019/2
Let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : \mathbb{Z}[x] \to \mathbb{Z}[x]$ (i.e. functions taking polynomials to polynomials)
such that
[list]
[*] for any polynomials $p, q \in \mathbb{Z}[x]$, $\theta(p + q) = \theta(p) + \theta(q)$;
[*] for any polynomial $p \in \mathbb{Z}[x]$, $p$ has an integer root if and only if $\theta(p)$ does.
[/list]

Carl Schildkraut
23 replies
alifenix-
May 23, 2020
Mathandski
2 hours ago
BMO 2024 SL A3
MuradSafarli   5
N 2 hours ago by Nuran2010

A3.
Find all triples \((a, b, c)\) of positive real numbers that satisfy the system:
\[
\begin{aligned}
11bc - 36b - 15c &= abc \\
12ca - 10c - 28a &= abc \\
13ab - 21a - 6b &= abc.
\end{aligned}
\]
5 replies
MuradSafarli
Apr 27, 2025
Nuran2010
2 hours ago
Cool functional equation
Rayanelba   4
N 3 hours ago by ATM_
Source: Own
Find all functions $f:\mathbb{Z}_{>0}\to \mathbb{Z}_{>0}$ that verify the following equation for all $x,y\in \mathbb{Z}_{>0}$:
$max(f^{f(y)}(x),f^{f(y)}(y))|min(x,y)$
4 replies
Rayanelba
5 hours ago
ATM_
3 hours ago
af(a)+bf(b)+2ab=x^2 for all natural a, b - show that f(a)=a
shoki   26
N 3 hours ago by MathLuis
Source: Iran TST 2011 - Day 4 - Problem 3
Suppose that $f : \mathbb{N} \rightarrow \mathbb{N}$ is a function for which the expression $af(a)+bf(b)+2ab$ for all $a,b \in \mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a \in \mathbb{N}$.
26 replies
shoki
May 14, 2011
MathLuis
3 hours ago
Very easy NT
GreekIdiot   8
N 3 hours ago by vsamc
Prove that there exists no natural number $n>1$ such that $n \mid 2^n-1$.
8 replies
GreekIdiot
Yesterday at 2:49 PM
vsamc
3 hours ago
Another quadrilateral in a circle
v_Enhance   110
N 3 hours ago by Marco22
Source: APMO 2013, Problem 5
Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$, and let $P$ be a point on the extension of $AC$ such that $PB$ and $PD$ are tangent to $\omega$. The tangent at $C$ intersects $PD$ at $Q$ and the line $AD$ at $R$. Let $E$ be the second point of intersection between $AQ$ and $\omega$. Prove that $B$, $E$, $R$ are collinear.
110 replies
v_Enhance
May 3, 2013
Marco22
3 hours ago
Rectangle EFGH in incircle, prove that QIM = 90
v_Enhance   64
N 3 hours ago by lpieleanu
Source: Taiwan 2014 TST1, Problem 3
Let $ABC$ be a triangle with incenter $I$, and suppose the incircle is tangent to $CA$ and $AB$ at $E$ and $F$. Denote by $G$ and $H$ the reflections of $E$ and $F$ over $I$. Let $Q$ be the intersection of $BC$ with $GH$, and let $M$ be the midpoint of $BC$. Prove that $IQ$ and $IM$ are perpendicular.
64 replies
v_Enhance
Jul 18, 2014
lpieleanu
3 hours ago
Queue geo
vincentwant   2
N 4 hours ago by MathLuis
Let $ABC$ be an acute scalene triangle with circumcenter $O$. Let $Y, Z$ be the feet of the altitudes from $B, C$ to $AC, AB$ respectively. Let $D$ be the midpoint of $BC$. Let $\omega_1$ be the circle with diameter $AD$. Let $Q\neq A$ be the intersection of $(ABC)$ and $\omega$. Let $H$ be the orthocenter of $ABC$. Let $K$ be the intersection of $AQ$ and $BC$. Let $l_1,l_2$ be the lines through $Q$ tangent to $\omega,(AYZ)$ respectively. Let $I$ be the intersection of $l_1$ and $KH$. Let $P$ be the intersection of $l_2$ and $YZ$. Let $l$ be the line through $I$ parallel to $HD$ and let $O'$ be the reflection of $O$ across $l$. Prove that $O'P$ is tangent to $(KPQ)$.
2 replies
vincentwant
Yesterday at 3:54 PM
MathLuis
4 hours ago
Last Problem :D
JustPostTaiwanTST   10
N Mar 2, 2025 by bin_sherlo
Source: 2019 Taiwan TST Round 3
Given a triangle $ \triangle{ABC} $ with circumcircle $ \Omega $. Denote its incenter and $ A $-excenter by $ I, J $, respectively. Let $ T $ be the reflection of $ J $ w.r.t $ BC $ and $ P $ is the intersection of $ BC $ and $ AT $. If the circumcircle of $ \triangle{AIP} $ intersects $ BC $ at $ X \neq P $ and there is a point $ Y \neq A $ on $ \Omega $ such that $ IA = IY $. Show that $ \odot\left(IXY\right) $ tangents to the line $ AI $.
10 replies
JustPostTaiwanTST
Apr 2, 2020
bin_sherlo
Mar 2, 2025
Last Problem :D
G H J
Source: 2019 Taiwan TST Round 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JustPostTaiwanTST
30 posts
#1 • 2 Y
Y by amar_04, takachonn
Given a triangle $ \triangle{ABC} $ with circumcircle $ \Omega $. Denote its incenter and $ A $-excenter by $ I, J $, respectively. Let $ T $ be the reflection of $ J $ w.r.t $ BC $ and $ P $ is the intersection of $ BC $ and $ AT $. If the circumcircle of $ \triangle{AIP} $ intersects $ BC $ at $ X \neq P $ and there is a point $ Y \neq A $ on $ \Omega $ such that $ IA = IY $. Show that $ \odot\left(IXY\right) $ tangents to the line $ AI $.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ABCCBA
237 posts
#3 • 3 Y
Y by AmirKhusrau, amar_04, enzoP14
I saw this problem about a year ago, then it suddenly got deleted after I solved it, quite surprise to see it again :(

Let $L$ be the reflection of $I$ with $O$
Let $D$ be the midpoint of arc $BC$ of $(O)$ not contain $A$ and $(J)$ tangent to $BC$ at $E$
From Euler's formula $JO^2=R^2+2RR_a$, with $R, R_a$ circumradius of $(ABC)$ and $(J)$
Or $JO^2-R^2=R.JE$, or $JD.JA=R.JT$
note that $JL = 2R$ and $JI = 2JD$ $\Rightarrow$ $JI.JA=JL.JT$ so $A, I, L, T$ are concyclic
By Miquel theorem $I, X, E, L$ are concyclic so $IX \perp IO$
From the definition of $Y$ we have $AY \perp IO$ too
Let $DY$ meet $BC$ at $K$
$\angle DKB = \angle YBD = \angle YAD = \angle IYA = \angle YIX$ so $K, I, X, Y$ are concyclic
We have $DI^2 = DY. DK$ $\Rightarrow$ $DI$ is tangent to $(IXY)$
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_pi_rate
1218 posts
#4 • 2 Y
Y by amar_04, MS_asdfgzxcvb
Nice! Here's my solution: Let $M$ be the midpoint of $IJ$, and let $I'$ be the reflection of $I$ in line $BC$. Also suppose lines $AI,MY$ meet line $BC$ at $L,K$. Invert about $M$ with radius $MI$. Using Shooting Lemma, $Y \mapsto K$ and $A \mapsto L$. Then, using inversive distance formula ($r=MI$) and the fact that $IA=IY$, we have $$\frac{IK}{IL}=\frac{r^2 \cdot IY}{MI \cdot MY} \div \frac{r^2 \cdot IA}{MI \cdot MA}=\frac{MA}{MY}=\frac{MK}{ML}$$Since $L \in MI$, so this means that $KL$ bisects $\angle IKM$. In particular, point $I'$ is the reflection of $I$ in the angle bisector of $\angle IKM$, and so $I' \in MK$. Suppose $\odot (IKY)$ meets line $BC$ again at $X'$. We claim that $X' \equiv X$. Note that this finishes the problem, since we have $MK \cdot MY=MI^2$, i.e. $\odot (IKY)$ is tangent to $MI$. Thus it suffices to prove that $X' \in \odot (AIP)$.

Let $H$ be the orthocenter of $\triangle JBC$, and let $H'$ be its reflection in line $BC$. Note that $HH'II'$ is a rectangle, and $M$ lies on the common perpendicular bisector of $HI',H'I$. In particular, this gives us $$\measuredangle YIX'=\measuredangle YKX'=\angle (I'M,BC)=\angle (BC,MH)$$Also, $\sqrt{JB \cdot JC}$ inversion about $J$ followed by antiparallelism in $\angle BJC$ gives that $$JM \cdot JT=JB \cdot JC=JH \cdot JA \Rightarrow \frac{JM}{JA}=\frac{JH}{JT}$$where we use the fact that $\{H,A\}$ and $\{M,T\}$ are swapped in this process. This gives that $AT \parallel MH$, and so $$\measuredangle APX'=\angle (BC,MH)=\measuredangle  YIX'$$Finally, since $KX'$ bisects $\angle IKY$, so by Fact 5, $X'I=X'Y$. Thus, we have $$\measuredangle AIX'=\measuredangle X'YI=\measuredangle YIX'=\measuredangle APX' \Rightarrow X' \in \odot (AIP) \quad \blacksquare$$
NOTE: The first paragraph is basically this KoMaL problem.
This post has been edited 2 times. Last edited by math_pi_rate, Apr 2, 2020, 11:02 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#5 • 4 Y
Y by amar_04, sameer_chahar12, mueller.25, MS_asdfgzxcvb
[asy]
import olympiad;
size(12cm);
pair A=dir(108);
pair B=dir(198);
pair C=dir(343);
draw(A--B--C--A,blue);
draw(circumcircle(A,B,C),orange);
pair O=circumcenter(A,B,C);
pair I=incenter(A,B,C);
pair M=circumcenter(B,I,C);
pair J=2*M-I;
draw(incircle(A,B,C),blue);
pair T=reflect(B,C)*J;
draw(T--J,dotted+purple);
pair P=extension(A,T,B,C);
path alice=circumcircle(I,A,P);
pair X=intersectionpoints(alice,Line(B,C))[1];
draw(circumcircle(I,A,P),green+dotted);
pair Y=reflect(O,I)*A;
pair H=extension(O,I,J,T);
draw(T--P,red);
draw(P--B--C,blue);
draw(I--Y,pink);
draw(I--A,pink+pink+pink);
draw(I--O--H,green);
draw(circumcircle(I,X,Y),red);
draw(A--I--M--J,yellow+orange);
draw(O--M,purple);
draw(circumcircle(I,A,H),dotted+blue);
draw(I--X,brown);
draw(A--Y,brown);
path roo=circumcircle(I,X,Y);
pair G=intersectionpoints(roo,Line(A,Y))[0];
dot("$A$",A,N);
dot("$B$",B,W);
dot("$C$",C,E);
dot("$I$",I,E);
dot("$J$",J,E);
dot("$T$",T,E);
dot("$X$",X,S);
dot("$O$",O,E);
dot("$Y$",Y,W);
dot("$P$",P,S);
dot("$H$",H,E);
dot("$M$",M,S);
dot("$G$",G,NW);
[/asy]
Proof: Define $M$ as the midpoint of $\widehat{BC}$. We break the problem into several claims.

Claim 1: If $H= \overline{IO} \cap \overline{JT}$ then $\overline{IO}=\overline{OH}$.

Proof: Notice that since $\overline{JT} \perp \overline{BC}$ and also $\overline{OM} \perp \overline{BC}$ $\implies$ $\overline{OM} \parallel \overline{JH}$. Now by fact 5 we have that $M$ is the midpoint of $\overline{IJ}$ and so by thales theorem we are done $\square$.


Claim 2: $(AIHT)$ is cyclic.

Proof: Denote by $R$ the circumradius. For this firstly notice that $$\begin{cases} JI=4R \sin \left(\frac{A}{2} \right) \\ JA=4R\sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right)+4R \sin \left(\frac{A}{2} \right) \\ JH=2R \\ JT=8R \sin \left(\frac{A}{2} \right) \cos \left (\frac{B}{2} \right) \cos \left(\frac{C}{2} \right) \end{cases}$$Now we are all set to bash. Notice that we just need to show
$$JI \cdot JA=JH \cdot JT$$$$\iff 4R \sin \left(\frac{A}{2} \right) \times \left(4R\sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right)+4R \sin \left(\frac{A}{2} \right)\right)=2R \times 8R \sin \left(\frac{A}{2} \right) \cos \left (\frac{B}{2} \right) \cos \left(\frac{C}{2} \right)$$$$\iff\sin \left(\frac{A}{2} \right)=\cos \left(\frac{B}{2} \right) \cos \left(\frac{C}{2} \right)-\sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right) $$$$\iff 4\sin \left(\frac{A}{2} \right) \cos \left(\frac{A}{2} \right)=4 \cos \left(\frac{A}{2} \right) \cos \left(\frac{B}{2} \right) \cos \left(\frac{C}{2} \right)-4\cos \left(\frac{A}{2} \right) \sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right)$$$$\iff 4\sin \left(\frac{A}{2} \right) \cos \left(\frac{A}{2} \right)=\sin A+\sin B+\sin C- \sin B-\sin C+\sin A$$which is trivial. $\square$.

Now back to the main problem. Observe that $$\angle XIJ=\angle APX=90^\circ-\angle PTJ=90^\circ-\angle HIJ=\angle AYI=\angle GYI$$where $G=\overline{AY} \cap \odot(IYX)$. Now this implies that $\overline{GX} \parallel \overline{AI}$ $\implies$ $\angle YGX=\angle YAI=\angle IYA=\angle IYG$ $\implies$ $\overline{YG} \parallel \overline{IX}$. This implies the required tangency $\blacksquare$.
Edit
This post has been edited 2 times. Last edited by GeoMetrix, Apr 8, 2020, 6:15 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
FISHMJ25
293 posts
#6
Y by
@above Why does this imply tangency?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Fouad-Almouine
72 posts
#7
Y by
Nice! Here is a synthetic solution :D
Firstly, we are going to prove the following $\textbf{lemma.}$
Let $ABC$ be a triangle with circumcenter $O$ and incenter $I$. Let $M=AI \cap (ABC)$ and $L$ be the reflection of $I$ with respect to $O$. If $K$ was the $A$-excircle touch point with $BC$, then $ALKM$ is cyclic.
$\textcolor{black}{\textit{\textbf{proof.}}}$
Let $R=AI \cap BC$, $N=MO \cap (ABC) $ and $J$ the $A$-excenter. The perpendicular to $AI$ at $I$ meet $BC$ at $Q$, finally $S=QM \cap (ABC)$.
If $D$ was the projection of $I$ on $BC$ then clearly $K$ is the reflection of $D$ with respect to $MN$, thus $LK \perp BC$ which implies that $L,K,J$ are collinear.
Some angle chaising gives
$$ \angle{QIB} = 90 - \angle{QIM} = 90 - \frac{\angle{A}}{2} - \frac{\angle{B}}{2} = \frac{\angle{C}}{2} = \angle{ICB}$$Hence $QI^2 = QB \cdot QC = QS \cdot QM$, therefore
$$\angle{MSI} = 180 - \angle{QSI} = 180 - \angle{QIM} = 90 = \angle{MSN} $$giving that $N,I,S$ are collinear. But notice that $O$ is the midpoint of $IL,MN$ thus $MINL$ is a parallelogram, so we get $ML \perp MQ$ and
$$ \Longrightarrow \angle{QML} = 90 = \angle{QKL} $$yields that $QMKL$ is cyclic.
It is clear that $\angle{QIJ} = 90 = \angle{QKJ}$, so $QIKJ$ is cyclic giving that
$$ QR \cdot RK = \underbrace{IR \cdot RJ = BR \cdot RC}_{IBJC \cdots cyclic} = AR \cdot RM $$Thus $QMKA$ is cyclic, as we proved earlier $QMKL$ is cyclic, so both $A,L \in (PMK)$ and therefore $ALKM$ is cyclic, as required. $\blacksquare$
Now let $T$ be the reflection of $J$ with respect to $BC$, clearly $K$ is the midpoint of $JT$, but $M$ is the midpoint of $JI$, thus $IT \parallel MK$. Some angle chaising gives
$$ \angle{JTI} = \underbrace{\angle{JKM} = \angle{JAL}}_{AMKL \cdots cyclic} $$Eventually, $AILT$ is cyclic.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -1646.0075263516944, xmax = 1493.1962514284116, ymin = -1157.1249723785858, ymax = 981.2227587316867;  /* image dimensions */
pen qqccqq = rgb(0,0.8,0); pen wwqqcc = rgb(0.4,0,0.8); 
 /* draw figures */
draw((-167.63897294365046,-130.58740310083178)--(-127.40818212804285,169.86086144855187), linewidth(0.8)); 
draw((-167.63897294365046,-130.58740310083178)--(167.73772609794807,-130.84580124246116), linewidth(0.8)); 
draw((167.73772609794807,-130.84580124246116)--(-127.40818212804285,169.86086144855187), linewidth(0.8)); 
draw(circle((0.14998431432123158,-0.1371383327478606), 212.53330505071585), linewidth(0.8)); 
draw((-0.01376646179399188,-212.67038030083142)--(0.3137350904364484,212.39610363533572), linewidth(0.8)); 
draw((-127.40818212804285,169.86086144855187)--(58.95978464628604,-389.752127705253), linewidth(0.8)); 
draw((-95.85274530025342,-189.7522265043686)--(0.3137350904364484,212.39610363533572), linewidth(0.8)); 
draw((-58.98731756987399,-35.58863289640991)--(59.28728619851646,35.3143562309142), linewidth(0.8)); 
draw((59.28728619851646,35.3143562309142)--(58.95978464628604,-389.752127705253), linewidth(0.8)); 
draw((-343.8354959739546,-130.45164872599687)--(-167.63897294365046,-130.58740310083178), linewidth(0.8)); 
draw((-343.8354959739546,-130.45164872599687)--(-0.01376646179399188,-212.67038030083142), linewidth(0.8)); 
draw((-0.01376646179399188,-212.67038030083142)--(59.28728619851646,35.3143562309142), linewidth(0.8)); 
draw((-343.8354959739546,-130.45164872599687)--(-58.98731756987399,-35.58863289640991), linewidth(0.8)); 
draw(circle((-142.27410488771912,-47.56864624754134), 217.93711587625933), linewidth(0.8) + qqccqq); 
draw((-167.63897294365046,-130.58740310083178)--(-58.98731756987399,-35.58863289640991), linewidth(0.8)); 
draw((-58.98731756987399,-35.58863289640991)--(167.73772609794807,-130.84580124246116), linewidth(0.8)); 
draw((59.28728619851646,35.3143562309142)--(59.35887337547426,128.22783831100497), linewidth(0.8)); 
draw(circle((-49.00221087777636,81.85455880504715), 117.86689795136614), linewidth(0.8) + wwqqcc); 
draw((-0.01376646179399188,-212.67038030083142)--(59.15932901088014,-130.76214469712403), linewidth(0.4)); 
draw((-58.98731756987399,-35.58863289640991)--(59.35887337547426,128.22783831100497), linewidth(0.8)); 
draw((-127.40818212804285,169.86086144855187)--(59.28728619851646,35.3143562309142), linewidth(0.8)); 
 /* dots and labels */
dot((-127.40818212804285,169.86086144855187),linewidth(3pt) + dotstyle); 
label("$A$", (-120.81221973709452,180.1963323014009), NE * labelscalefactor); 
dot((-167.63897294365046,-130.58740310083178),linewidth(3pt) + dotstyle); 
label("$B$", (-160.09496559614916,-120.40207079397288), NE * labelscalefactor); 
dot((167.73772609794807,-130.84580124246116),linewidth(3pt) + dotstyle); 
label("$C$", (174.6623469418817,-120.40207079397288), NE * labelscalefactor); 
dot((-0.01376646179399188,-212.67038030083142),linewidth(3pt) + dotstyle); 
label("$M$", (7.283690672866275,-202.38345345634755), NE * labelscalefactor); 
dot((58.95978464628604,-389.752127705253),linewidth(3pt) + dotstyle); 
label("$J$", (65.35383672538184,-380.0097825581593), NE * labelscalefactor); 
dot((-58.98731756987399,-35.58863289640991),linewidth(3pt) + dotstyle); 
label("$I$", (-52.494400851782096,-24.757124354535776), NE * labelscalefactor); 
dot((0.3137350904364484,212.39610363533572),linewidth(3pt) + dotstyle); 
label("$N$", (7.283690672866275,222.89496910472104), NE * labelscalefactor); 
dot((-95.85274530025342,-189.7522265043686),linewidth(3pt) + dotstyle); 
label("$S$", (-88.36125576657112,-180.1801623186211), NE * labelscalefactor); 
dot((59.15932901088014,-130.76214469712403),linewidth(3pt) + dotstyle); 
label("$K$", (65.35383672538184,-120.40207079397288), NE * labelscalefactor); 
dot((0.14998431432123158,-0.1371383327478606),linewidth(3pt) + dotstyle); 
label("$O$", (7.283690672866275,9.401785088120336), NE * labelscalefactor); 
dot((59.28728619851646,35.3143562309142),linewidth(3pt) + dotstyle); 
label("$L$", (65.35383672538184,45.26864000290925), NE * labelscalefactor); 
dot((-343.8354959739546,-130.45164872599687),linewidth(3pt) + dotstyle); 
label("$Q$", (-337.72129469796147,-120.40207079397288), NE * labelscalefactor); 
dot((-27.31386209085797,-130.6955195799191),linewidth(3pt) + dotstyle); 
label("$R$", (-20.043436881258696,-120.40207079397288), NE * labelscalefactor); 
dot((59.35887337547426,128.22783831100497),linewidth(3pt) + dotstyle); 
label("$T$", (65.35383672538184,139.20564097021355), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Going back to the main problem with the result that $AILT$ is cyclic.
Since $IA=IY$, $OA=OY$, then $OI$ is the perpendicular bisector of $AY$. Some angle chaising gives
$$ \angle{TPC} = 90 - \angle{ATL} = 90 - (180 - \angle{AIL}) = \angle{AIL} - 90 = \frac{360-\angle{AIY}}{2} - 90 = \frac{180-\angle{AIY}}{2} = \angle{IYA} =\angle{IAY} $$Now let the circle that passes through $Y,I$ and tangent to $AI$ meet $BC$ at $X'$, and define $Z = MX' \cap (ABC)$.
It is easy to get that
$$\angle{MZB} = \frac{\angle{A}}{2} = \angle{MBX'} $$Thus $MI^2 = MB^2 = MX' \cdot MZ$.
Hence $MI$ is tangent to $(X'IZ) $, but $MI$ by defenition is tangent to $(X'IY)$, therefore $X'YZI$ is cyclic.
By angle chaising
$$\angle{X'IY} = \angle{X'ZY} = \angle{MZY} = \angle{MAY} = \angle{IAY}$$Thus
$$ \angle{APX'} + \angle{AIX'} = \angle{TPC} + \angle{YIA} + \angle{X'IY} = \angle{IAY}+ (180 - 2\angle{IAY}) + \angle{IAY} = 180 $$So $X' \equiv (AIP) \cap BC \equiv X$, as desired. $\blacksquare$
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(0cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -394.07964514897344, xmax = 3123.5977929092946, ymin = -1732.9666354926225, ymax = 663.187963228231;  /* image dimensions */
pen wwqqcc = rgb(0.4,0,0.8); pen ffdxqq = rgb(1,0.8431372549019608,0); pen qqccqq = rgb(0,0.8,0); pen ffqqtt = rgb(1,0,0.2); 
 /* draw figures */
draw((-190.97556956311763,-53.03741002300586)--(-90.56751623206671,175.74320132216192), linewidth(0.8)); 
draw((-190.97556956311763,-53.03741002300586)--(191.06492092018888,-53.331761279518844), linewidth(0.8)); 
draw((191.06492092018888,-53.331761279518844)--(-90.56751623206671,175.74320132216192), linewidth(0.8)); 
draw(circle((0.08529317897995087,-0.4668565823161425), 198.16133921836283), linewidth(0.8)); 
draw((-56.481232916628954,34.7386829188209)--(56.65181927458886,-35.67239608345318), linewidth(0.8)); 
draw((56.65181927458886,-35.67239608345318)--(56.346464091924226,-431.9949568864847), linewidth(0.8)); 
draw((-0.06738441235236081,-198.62813698383192)--(56.65181927458886,-35.67239608345318), linewidth(0.8)); 
draw((-190.97556956311763,-53.03741002300586)--(-56.481232916628954,34.7386829188209), linewidth(0.8)); 
draw((-56.481232916628954,34.7386829188209)--(191.06492092018888,-53.331761279518844), linewidth(0.8)); 
draw(circle((90.56225737523314,144.90707117963547), 183.73584791542046), linewidth(0.8) + wwqqcc); 
draw((-90.56751623206671,175.74320132216192)--(56.65181927458886,-35.67239608345318), linewidth(0.8)); 
draw((-198.04476394896832,3.0540556987585767)--(-56.481232916628954,34.7386829188209), linewidth(0.8) + ffdxqq); 
draw((56.65181927458886,-35.67239608345318)--(56.930121985307444,325.5385780612209), linewidth(0.8)); 
draw((-315.7441641161175,-52.9412793941985)--(56.930121985307444,325.5385780612209), linewidth(0.8)); 
draw((-315.7441641161175,-52.9412793941985)--(-190.97556956311763,-53.03741002300586), linewidth(0.8)); 
draw((-111.14907630760793,-53.09891404987762)--(-198.04476394896832,3.0540556987585767), linewidth(0.8)); 
draw((-111.14907630760793,-53.09891404987762)--(-56.481232916628954,34.7386829188209), linewidth(0.8)); 
draw(circle((-213.35072768227604,71.43946723890106), 161.10551187882564), linewidth(0.8) + linetype("2 2") + qqccqq); 
draw(circle((-126.99367896883765,17.693078702614773), 72.54348813891694), linewidth(0.8) + ffqqtt); 
draw((-0.06738441235236081,-198.62813698383192)--(-191.10075891570028,51.64657590169209), linewidth(0.8)); 
draw((56.346464091924226,-431.9949568864847)--(-56.481232916628954,34.7386829188209), linewidth(0.8)); 
draw((-56.481232916628954,34.7386829188209)--(-90.56751623206671,175.74320132216192), linewidth(0.8) + ffdxqq); 
draw((-198.04476394896832,3.0540556987585767)--(56.65181927458886,-35.67239608345318), linewidth(0.8)); 
 /* dots and labels */
dot((-90.56751623206671,175.74320132216192),linewidth(3pt) + dotstyle); 
label("$A$", (-82.12022055512265,186.63644958486628), NE * labelscalefactor); 
dot((-190.97556956311763,-53.03741002300586),linewidth(3pt) + dotstyle); 
label("$B$", (-183.55488008563856,-41.11306898364936), NE * labelscalefactor); 
dot((191.06492092018888,-53.331761279518844),linewidth(3pt) + dotstyle); 
label("$C$", (199.21742002951575,-41.11306898364936), NE * labelscalefactor); 
dot((-0.06738441235236081,-198.62813698383192),linewidth(3pt) + dotstyle); 
label("$M$", (7.831269971938604,-186.56654302740725), NE * labelscalefactor); 
dot((56.346464091924226,-431.9949568864847),linewidth(3pt) + dotstyle); 
label("$J$", (63.333253488635975,-420.0576460976502), NE * labelscalefactor); 
dot((-56.481232916628954,34.7386829188209),linewidth(3pt) + dotstyle); 
label("$I$", (-49.58457504533454,46.92456004283568), NE * labelscalefactor); 
dot((0.08529317897995087,-0.4668565823161425),linewidth(3pt) + dotstyle); 
label("$O$", (7.831269971938604,10.561191531896206), NE * labelscalefactor); 
dot((56.65181927458886,-35.67239608345318),linewidth(3pt) + dotstyle); 
label("$L$", (65.24711498921175,-23.888315478467504), NE * labelscalefactor); 
dot((-198.04476394896832,3.0540556987585767),linewidth(3pt) + dotstyle); 
label("$Y$", (-191.21032608794164,14.38891453304773), NE * labelscalefactor); 
dot((56.930121985307444,325.5385780612209),linewidth(3pt) + dotstyle); 
label("$T$", (65.24711498921175,337.8315081303515), NE * labelscalefactor); 
dot((-315.7441641161175,-52.9412793941985),linewidth(3pt) + dotstyle); 
label("$P$", (-307.9558776230637,-41.11306898364936), NE * labelscalefactor); 
dot((-111.14907630760793,-53.09891404987762),linewidth(3pt) + dotstyle); 
label("$X'$", (-103.17269706145615,-41.11306898364936), NE * labelscalefactor); 
dot((-191.10075891570028,51.64657590169209),linewidth(3pt) + dotstyle); 
label("$Z$", (-183.55488008563856,62.235452047441775), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
This post has been edited 1 time. Last edited by Fouad-Almouine, May 25, 2020, 10:52 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
k12byda5h
104 posts
#8 • 5 Y
Y by Jerry37284, Afternonz, Tudor1505, Muaaz.SY, R8kt
I use "$J'$" instead of "$T$"

Let $M=AI \cap \odot(ABC) \ne A$ , $I'$ be the reflection of $I$ across $BC$ , $A'$ be the antipode of $A$ and incircle touch $BC$ at $D$. Since, $\frac{AI}{AA'}=\frac{ID}{IM}$ We get $\triangle AIA' \sim \triangle IDM$ then $\triangle AIO \sim \triangle II'M$. By angle-chasing, $I',M,Y$ are collinear. Let $S=AI \cap BC$. By power of points, $A,I',M'J'$ are concyclic. $X'=MI' \cap BC$. $\angle SAP = \angle SI'X'=\angle SIX'$. Therefore, $AP \parallel IX'$. By power points, $\frac{SI}{SX}=\frac{SP}{SA}=\frac{SX'}{SI},SI^2=SX \cdot SX'$. So, $\omega_1=\odot(IXX')$ tangents to $AI$ and $\omega_2=\odot(IYX)$ tangents to $AI$ ($MI^2=MX' \cdot MY$). So, $\omega_1=\omega_2$. Therefore, $\odot(IXY)$ tangents to $AI$.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hydo2332
435 posts
#10 • 3 Y
Y by Mango247, Mango247, Mango247
GeoMetrix wrote:
[asy]
import olympiad;
size(12cm);
pair A=dir(108);
pair B=dir(198);
pair C=dir(343);
draw(A--B--C--A,blue);
draw(circumcircle(A,B,C),orange);
pair O=circumcenter(A,B,C);
pair I=incenter(A,B,C);
pair M=circumcenter(B,I,C);
pair J=2*M-I;
draw(incircle(A,B,C),blue);
pair T=reflect(B,C)*J;
draw(T--J,dotted+purple);
pair P=extension(A,T,B,C);
path alice=circumcircle(I,A,P);
pair X=intersectionpoints(alice,Line(B,C))[1];
draw(circumcircle(I,A,P),green+dotted);
pair Y=reflect(O,I)*A;
pair H=extension(O,I,J,T);
draw(T--P,red);
draw(P--B--C,blue);
draw(I--Y,pink);
draw(I--A,pink+pink+pink);
draw(I--O--H,green);
draw(circumcircle(I,X,Y),red);
draw(A--I--M--J,yellow+orange);
draw(O--M,purple);
draw(circumcircle(I,A,H),dotted+blue);
draw(I--X,brown);
draw(A--Y,brown);
path roo=circumcircle(I,X,Y);
pair G=intersectionpoints(roo,Line(A,Y))[0];
dot("$A$",A,N);
dot("$B$",B,W);
dot("$C$",C,E);
dot("$I$",I,E);
dot("$J$",J,E);
dot("$T$",T,E);
dot("$X$",X,S);
dot("$O$",O,E);
dot("$Y$",Y,W);
dot("$P$",P,S);
dot("$H$",H,E);
dot("$M$",M,S);
dot("$G$",G,NW);
[/asy]
Proof: Define $M$ as the midpoint of $\widehat{BC}$. We break the problem into several claims.

Claim 1: If $H= \overline{IO} \cap \overline{JT}$ then $\overline{IO}=\overline{OH}$.

Proof: Notice that since $\overline{JT} \perp \overline{BC}$ and also $\overline{OM} \perp \overline{BC}$ $\implies$ $\overline{OM} \parallel \overline{JH}$. Now by fact 5 we have that $M$ is the midpoint of $\overline{IJ}$ and so by thales theorem we are done $\square$.


Claim 2: $(AIHT)$ is cyclic.

Proof: Denote by $R$ the circumradius. For this firstly notice that $$\begin{cases} JI=4R \sin \left(\frac{A}{2} \right) \\ JA=4R\sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right)+4R \sin \left(\frac{A}{2} \right) \\ JH=2R \\ JT=8R \sin \left(\frac{A}{2} \right) \cos \left (\frac{B}{2} \right) \cos \left(\frac{C}{2} \right) \end{cases}$$Now we are all set to bash. Notice that we just need to show
$$JI \cdot JA=JH \cdot JT$$$$\iff 4R \sin \left(\frac{A}{2} \right) \times \left(4R\sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right)+4R \sin \left(\frac{A}{2} \right)\right)=2R \times 8R \sin \left(\frac{A}{2} \right) \cos \left (\frac{B}{2} \right) \cos \left(\frac{C}{2} \right)$$$$\iff\sin \left(\frac{A}{2} \right)=\cos \left(\frac{B}{2} \right) \cos \left(\frac{C}{2} \right)-\sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right) $$$$\iff 4\sin \left(\frac{A}{2} \right) \cos \left(\frac{A}{2} \right)=4 \cos \left(\frac{A}{2} \right) \cos \left(\frac{B}{2} \right) \cos \left(\frac{C}{2} \right)-4\cos \left(\frac{A}{2} \right) \sin \left(\frac{B}{2} \right) \sin \left(\frac{C}{2} \right)$$$$\iff 4\sin \left(\frac{A}{2} \right) \cos \left(\frac{A}{2} \right)=\sin A+\sin B+\sin C- \sin B-\sin C+\sin A$$which is trivial. $\square$.

Now back to the main problem. Observe that $$\angle XIJ=\angle APX=90^\circ-\angle PTJ=90^\circ-\angle HIJ=\angle AYI=\angle GYI$$where $G=\overline{AY} \cap \odot(IYX)$. Now this implies that $\overline{GX} \parallel \overline{AI}$ $\implies$ $\angle YGX=\angle YAI=\angle IYA=\angle IYG$ $\implies$ $\overline{YG} \parallel \overline{IX}$. This implies the required tangency $\blacksquare$.
Edit

Why is $90^\circ-\angle HIJ=\angle AYI$ ????
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KST2003
173 posts
#11 • 1 Y
Y by SK_pi3145
Beautiful problem! :)
Let $\triangle LMN$ be the circumcevian triangle of $I$, and let $D$ and $D'$ be the incircle and $A$-excircle touch points. Let $Q$ be the reflection of $D$ over $I$ and let $R$ be the reflection of $I$ over $Q$. Finally, let $E$ be the reflection of $X$ over $I$.

Claim 1: $E$ lies on $\overline{MN}$.

Proof. Consider the homothety $\mathcal{H}$ centered at $A$ taking the incircle to $A$-excircle. This takes $\{I,Q,R\}$ to $\{J,D',T\}$, so $A,R,T$ are collinear. It is also easy to see that $E$ lies on the perpendicular bisector of $IR$. Now angle chasing shows that
\[\measuredangle IEQ = \measuredangle IXD = \measuredangle IAR\]which means that $E$ is in fact the circumcenter of $\triangle AIR$. Hence it lies on the perpendicular bisector of $AI$ which is $\overline{MN}$ by the incenter lemma. $\square$

Let $O$ be the circumcenter of $\triangle ABC$. Since $IE=IX$, by Butterfly theorem it follows that $OI \perp XE$. Since $Y$ is the reflection of $A$ over $\overline{OI}$, angle chasing finally gives us
\[\measuredangle IYX = -\measuredangle IAE = \measuredangle AIE = \measuredangle XIJ\]and we're done. $\blacksquare$
[asy]
defaultpen(fontsize(10pt));
size(12cm);
pen mydash = linetype(new real[] {5,5});
pair A = dir(123);
pair B = dir(228);
pair C = dir(312);
pair I = incenter(A,B,C);
pair O = circumcenter(A,B,C);
pair L = 2*foot(O,A,I)-A;
pair M = 2*foot(O,B,I)-B;
pair N = 2*foot(O,C,I)-C;
pair J = 2*L-I;
pair T = 2*foot(J,B,C)-J;
pair P = extension(A,T,B,C);
pair D = foot(I,B,C);
pair D1 = foot(J,B,C);
pair Q = 2*I-D;
pair R = 2*Q-I;
pair E = circumcenter(A,R,I);
pair X = 2*I-E;
pair Y = 2*foot(A,O,I)-A;
draw(A--B--C--cycle, black+1);
draw(A--J);
draw(D--R);
draw(J--T);
draw(A--P);
draw(E--X);
draw(B--M, mydash);
draw(C--N, mydash);
draw(M--N);
draw(C--P);
draw(E--Q);
draw(O--I);
draw(circumcircle(I,X,Y));
draw(circumcircle(A,B,C));
draw(circle(I, abs(I-D)));
draw(circumcircle(B,I,C), dotted);
dot("$A$", A, dir(A));
dot("$B$", B, dir(B));
dot("$C$", C, dir(315));
dot("$I$", I, dir(180));
dot("$O$", O, dir(180));
dot("$L$", L, dir(250));
dot("$M$", M, dir(M));
dot("$N$", N, dir(N));
dot("$J$", J, dir(270));
dot("$T$", T, dir(60));
dot("$P$", P, dir(0));
dot("$D$", D, dir(270));
dot("$Q$", Q, dir(135));
dot("$R$", R, dir(90));
dot("$E$", E, dir(90));
dot("$X$", X, dir(270));
dot("$Y$", Y, dir(Y));
dot("$D'$", D1, dir(315));
[/asy]
This post has been edited 1 time. Last edited by KST2003, May 25, 2021, 6:05 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
axolotlx7
133 posts
#12 • 1 Y
Y by GeoKing
Beautiful problem! similar solution to above, posting for storage

Let $O$ denote the circumcenter and $\Delta DEF$ be the intouch triangle. Reflect $D$ across $I$ to $S$ and reflect $I$ across $S$ to $K$. Note that the homothety sending the incircle to the $A$-excircle sends $K$ to $T$, so $K$ lies on $AT$ (and we can erase $T,J$ from the diagram). Let $Z$ be the midpoint of $AI$, then by midpoint theorem we have $ZS \parallel AP$. Furthermore let $L$ be the projection of $A$ on $ID$, then it is easy to show that $\Delta LEF$ and $\Delta ABC$ are oppositely similar, $Z$ is the circumcenter of $\Delta LEF$ and $S$ is the incenter of $\Delta LEF$ by Fact 5. So by similarity we have, in formal sum,
\begin{align*} ZS + IO &= EF + BC \\
AP + IO &= (AI + 90^\circ) + BC \\
(AI + BC - XI) + IO &= (AI + 90^\circ) + BC \\
IO - XI = 90^\circ \end{align*}so $\angle XIO = 90^\circ$.

Finally, let $BI$ and $CI$ meet $\Omega$ again at $S_b, S_c$, then by Butterfly Theorem we have that the reflection $X'$ of $X$ across $I$ lies on $S_bS_c$. So
\[ \measuredangle AIX = \measuredangle AIX' = \measuredangle X'AI = \measuredangle IYX \]which finishes the problem.
https://i.imgur.com/YWeWmLU.png
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
715 posts
#14
Y by
Let $A'$ be the reflection of $A$ over $BC$. Note that $P=JA'\cap BC$. Apply $\sqrt{bc}$ inversion.

New Problem Statement: $ABC$ is a triangle with incenter, $A-$excenter $I,J$. $Y\in BC$ such that $YA=YJ$. $(AIO)$ meets $(ABC)$ at $P$ and $JP$ intersects $(ABC)$ at $X$. Prove that $(JXY)$ and $AJ$ are tangent.
Apply $\sqrt{bc}$ inversion on $\triangle JBC$.

New Problem Statement: $ABC$ is a triangle with orthocenter $H$ and $AH$ meets $BC$ at $D$. Let $A'$ be the reflection of $A$ over $BC$. Point $P$ lies on $(BHC)$ such that $PA'$ is the exterior angle bisector of $\measuredangle DPA$. Let $AP$ meet $(BHC)$ at $X$ and $Y\in (AC)$ such that $HA=HY$. Prove that $XY\perp BC$.
$AH\cap (ABC)=H'$. Let $Y'\in (BHC)$ such that $H'A'=H'Y'$. Note that $YY'\perp BC$. Set $\triangle A'BC$ the main triangle.

New Problem Statement: $ABC$ is a triangle with orthocenter $H$, $\ AH$ meets $BC,(ABC)$ at $D,E$ respectively. $A'$ is the reflection of $A$ over $BC$. Point $P$ lies on $(ABC)$ such that $PA$ is exterior angle bisector of $\measuredangle PDA'$. Let $PA'$ intersect $(ABC)$ at $X$ and $Z$ lies on $(ABC)$ such that $HA=HZ$. Prove that $XZ\perp BC$.
First we will show that $W,H,Z$ are collinear. It sufficies to show that $HW=HE$. Let $K$ be the antipode of $A$ on $(ABC)$. Note that \[-1=(PK,PA;PD,PA')=(PK\cap AD,A;D,A')\]hence $P$ is unique. Note that $W,H,P,A'$ are concyclic since $DQ.DP=DB.DC=DH.DA'$.
\[\measuredangle HWE=\measuredangle HWP+\measuredangle PWE=\measuredangle AA'P+\measuredangle PAA'=180-\measuredangle A'PA=\measuredangle WPA=\measuredangle WEA\]Thus, $W,H,Z$ are collinear. $ZK\cap AH=Q$. Let $X'\in (ABC)$ where $X'Z\perp BC$. Since $KZ\perp AZ$ and $HA=HZ$, we have $HA=HQ$.
\[(A,K;W,X)=(PA,PK;PW,PA')=-1=(A,Q;H,AH_{\infty})=(ZA,ZK;ZH,ZX')=(A,K;W,X')\]So $X=X'$ as desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a