G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
Classic complex number geo
Ciobi_   0
8 minutes ago
Source: Romania NMO 2025 10.1
Let $M$ be a point in the plane, distinct from the vertices of $\triangle ABC$. Consider $N,P,Q$ the reflections of $M$ with respect to lines $AB, BC$ and $CA$, in this order.
a) Prove that $N, P ,Q$ are collinear if and only if $M$ lies on the circumcircle of $\triangle ABC$.
b) If $M$ does not lie on the circumcircle of $\triangle ABC$ and the centroids of triangles $\triangle ABC$ and $\triangle NPQ$ coincide, prove that $\triangle ABC$ is equilateral.
0 replies
Ciobi_
8 minutes ago
0 replies
Is this FE solvable?
Mathdreams   1
N 9 minutes ago by pco
Find all $f:\mathbb{R} \rightarrow \mathbb{R}$ such that \[f(2x+y) + f(x+f(2y)) = f(x)f(y) - xy\]for all reals $x$ and $y$.
1 reply
Mathdreams
Yesterday at 6:58 PM
pco
9 minutes ago
Proving 2 sequences are bounded above
Ciobi_   0
16 minutes ago
Source: Romania NMO 2025 9.4
Let $m \geq 2$ be a fixed positive integer, and $(a_n)_{n\geq 1}$ be a sequence of nonnegative real numbers such that, for all $n\geq 1$, we have that $a_{n+1} \leq a_n - a_{mn}$.
a) Prove that the sequence $b_n = \sum_{k=1}^{n} a_k$ is bounded above.
b) Prove that the sequence $c_n = \sum_{k=1}^{n} k^2 a_k$ is bounded above.
0 replies
Ciobi_
16 minutes ago
0 replies
One nice inequlity 1
prof.   1
N 23 minutes ago by sqing
If $a,b,c$ are positiv real number, such that $a^2+b^2+c^2=3abc$ prove inequality $$\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}\ge\frac{9}{a+b+c}.$$
1 reply
prof.
an hour ago
sqing
23 minutes ago
Inequality
JK1603JK   1
N 4 hours ago by lbh_qys
Prove that 9ab\left(a-b+c\right)+9bc\left(b-c+a\right)+9ca\left(c-a+b\right)\ge \left(a+b+c\right)^{3},\ \ a\ge 0\ge b\ge c: a+b+c\le 0.
1 reply
JK1603JK
5 hours ago
lbh_qys
4 hours ago
Solve the equetion
yt12   4
N 5 hours ago by lgx57
Solve the equetion:$\sin 2x+\tan x=2$
4 replies
yt12
Mar 31, 2025
lgx57
5 hours ago
Inequalities
sqing   2
N 5 hours ago by sqing
Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=11.$ Prove that
$$a+ab+abc\leq\frac{49}{6}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=10.$ Prove that
$$a+ab+abc\leq\frac{169}{24}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=14.$ Prove that
$$a+ab+abc\leq\frac{63+5\sqrt 5}{6}$$Let $ a, b,c\geq 0 $ and $ 2a+3b+ 4c=32.$ Prove that
$$a+ab+abc\leq48+\frac{64\sqrt{2}}{3}$$
2 replies
sqing
Yesterday at 2:59 PM
sqing
5 hours ago
geometry incentre config
Tony_stark0094   1
N 5 hours ago by Tony_stark0094
In a triangle $\Delta ABC$ $I$ is the incentre and point $F$ is defined such that $F \in AC$ and $F \in \odot BIC$
prove that $AI$ is the perpendicular bisector of $BF$
1 reply
Tony_stark0094
Yesterday at 4:09 PM
Tony_stark0094
5 hours ago
geometry
Tony_stark0094   1
N 5 hours ago by Tony_stark0094
Consider $\Delta ABC$ let $\omega_1$ and $\omega_2$ be the circles passing through $A,B$ and $A,C$ respectively such that $BC$ is tangent to $\omega_1$ and $\omega_2$ define $R$ to be a point such that it lies on both the circles $\omega_1$ and $\omega_2$ prove that $HR$ and $AR$ are perpendicular.
1 reply
Tony_stark0094
Today at 7:04 AM
Tony_stark0094
5 hours ago
one very nice!
MihaiT   1
N Today at 5:28 AM by MihaiT
Given $m_1$ weights, each weighing $k_1$ and another $m_2$ weights with $k_2$ each. Write a algorithm that determines the ways in which a scale can be balanced with a weight $X$ on the left pan, and display the number of possible solutions. (The weights can be placed on both pans and the program starts with the numbers $m_1,k_1,m_2,k_2,X$. What will be displayed after three successive runs: 5,2,5,1,4 | 5,2,5,1,11 | 5,2,5,1,20?

One answer is possible:
a)10;5;0;
b)20;7;0;
c)20;7;1;
d)10;10;0;
e)10;7;0;
f)20;5;0,
1 reply
MihaiT
Mar 31, 2025
MihaiT
Today at 5:28 AM
Geo Mock #4
Bluesoul   1
N Today at 4:44 AM by Sedro
Consider acute triangle $ABC$ with orthocenter $H$. Extend $AH$ to meet $BC$ at $D$. The angle bisector of $\angle{ABH}$ meets the midpoint of $AD$. If $AB=10, BH=6$, compute the area of $\triangle{ABC}$.
1 reply
Bluesoul
Yesterday at 7:03 AM
Sedro
Today at 4:44 AM
An inequality
JK1603JK   2
N Today at 3:24 AM by lbh_qys
Let a,b,c\ge 0: a+b+c=3 then prove \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le \frac{27}{2}\cdot\frac{1}{2ab+2bc+2ca+3}.
2 replies
JK1603JK
Today at 3:11 AM
lbh_qys
Today at 3:24 AM
Geo Mock #3
Bluesoul   2
N Yesterday at 11:31 PM by mathprodigy2011
Consider square $ABCD$ with side length of $5$. The point $P$ is selected on the diagonal $AC$ such that $\angle{BPD}=135^{\circ}$. Denote the circumcenters of $\triangle{BPA}, \triangle{APD}$ as $O_1,O_2$. Find the length of $O_1O_2$
2 replies
Bluesoul
Yesterday at 7:02 AM
mathprodigy2011
Yesterday at 11:31 PM
Geo Mock #2
Bluesoul   1
N Yesterday at 4:36 PM by Sedro
Consider convex quadrilateral $ABCD$ such that $AB=6, BC=10, \angle{ABC}=90^{\circ}$. Denote the midpoints of $AD,CD$ as $M,N$ respectively, compute the area of $\triangle{BMN}$ given the area of $ABCD$ is $50$.
1 reply
Bluesoul
Yesterday at 6:59 AM
Sedro
Yesterday at 4:36 PM
Best geo problem of the exam.
Mr.C   13
N Nov 24, 2023 by IMUKAT
Source: Iranian Third Round 2020 Geometry exam Problem4
Triangle $ABC$ is given. Let $O$ be it's circumcenter. Let $I$ be the center of it's incircle.The external angle bisector of $A$ meet $BC$ at $D$. And $I_A$ is the $A$-excenter . The point $K$ is chosen on the line $AI$ such that $AK=2AI$ and $A$ is closer to $K$ than $I$. If the segment $DF$ is the diameter of the circumcircle of triangle $DKI_A$, then prove $OF=3OI$.
13 replies
Mr.C
Nov 18, 2020
IMUKAT
Nov 24, 2023
Best geo problem of the exam.
G H J
G H BBookmark kLocked kLocked NReply
Source: Iranian Third Round 2020 Geometry exam Problem4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mr.C
539 posts
#1
Y by
Triangle $ABC$ is given. Let $O$ be it's circumcenter. Let $I$ be the center of it's incircle.The external angle bisector of $A$ meet $BC$ at $D$. And $I_A$ is the $A$-excenter . The point $K$ is chosen on the line $AI$ such that $AK=2AI$ and $A$ is closer to $K$ than $I$. If the segment $DF$ is the diameter of the circumcircle of triangle $DKI_A$, then prove $OF=3OI$.
This post has been edited 4 times. Last edited by Mr.C, Nov 18, 2020, 11:22 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
i3435
1350 posts
#2 • 2 Y
Y by Ali3085, PRMOisTheHardestExam
Woah this is nice
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Sugiyem
115 posts
#3 • 2 Y
Y by RodSalgDomPort, Brian_Xu
Beautiful problem.

Define $E=AI\cap BC$, $M=AD\cap \odot (ABC)$ with $M\neq A$, $N=AI\cap \odot (ABC)$ with $N\neq A$, and $X=I_{A}D\cap \odot (BIC)$ with $X\neq I_{A}$, $T$ as the reflection of $I$ wrt to $O$ and $F’$ as the reflection of $I$ wrt $T$.

We will prove that $\angle DI_{A}F’=\angle DKF’=90^{\circ}$ which will solve the problem

$\textbf{Claim 1:}$ $M,I,X$ are collinear.
$\textit{Proof:}$ Notice that
\[(B,C;I,X)\stackrel{I_{A}}{=}(B,C;E,D)=-1\]This implies $IX$, and tangent from $B$ and $C$ to $\odot (BIC)$ is concurrent. It is well known that MB and MC are both tangent to $\odot (BIC)$. Hence, we have $M,I,X$ are collinear.

$\textbf{Claim 2:}$ $\angle DI_{A}F’=90^{\circ}$.
$\textit{Proof:}$ Note that $MINT$ is a parallelogram because $IO=OT$ and $MO=ON$. Moreover, $TN\parallel I_{A}F’$ because $IT=TF’$ and $IN=NI_{A}$. Thus, we will have $MI\parallel TN\parallel I_{A}F’$. Therefore,
\[\angle DI_{A}F’=180^{\circ}-\angle IXI_{A}=180^{\circ}-90^{\circ}=90^{\circ}\]
$\textbf{Claim 3:}$ $\angle DKF’=90^{\circ}$.
$\textit{Proof:}$ Notice that we have $IM=TN$(because $MINT$ is a parallelogram), $AI=\frac{AK}{2}$, $TN=\frac{I_{A}F’}{2}$, and $\triangle MAI\thicksim \triangle I_{A}AD$. So,
\[\frac{I_{A}F’}{AK}=\frac{TN}{AI}=\frac{IM}{AI}=\frac{I_{A}D}{AD}\]Hence, $\frac{I_{A}F’}{I_{A}D}=\frac{AK}{AD}$. Because $\angle KAD=\angle F’I_{A}D=90^{\circ}$, we have that $\triangle AKD\thicksim \triangle I_{A}F’D$. Therefore,
\[\angle I_{A}F’D=\angle AKD=\angle I_{A}KD\implies DI_{A}F’K \text{is cyclic} \implies \angle DKF’=90^{\circ}-\angle DI_{A}F’=180^{\circ}-90^{\circ}=90^{\circ}\]
By combining claim 2 and 3, the problem is done.
This post has been edited 1 time. Last edited by Sugiyem, Nov 25, 2020, 2:44 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KST2003
173 posts
#4
Y by
Let $M$ and $N$ be midpoints of arc $BC$ and arc $BAC$, and let $L$ be the reflection of $A$ over $N$.
Claim: $L$ lies on $(DKI_A)$.
Proof: Let $NI_{A}$ cut $(BIC)$ at $T$. Then inverting with radius $NB$ sends $A$ to $D$, and $T$ to $I_A$, so it follows that $A,D,T,I_A$ are concyclic and $\angle DTI_A=\angle DAI_A=90^\circ$. Meanwhile, $\angle ITI_A=90^\circ$, so $D,I,T$ are collinear. Hence, $\angle ADI=\angle DI_AN$, and so $\triangle ADI\sim\triangle AI_AN$. Finally,
\[AD\cdot AN=AI\cdot AI_A\Longrightarrow AD\cdot AL=AK\cdot AI_A\]and so $D,K,I_A,L$ are concyclic.
Now let $F'$ be the point on ray $IO$ such that $IF'=4IO$, and let $V$ be the midpoint of $IF'$. Then $V$ is the reflection of $I$ over $O$, and so $IMVN$ is a parallelogram and $VN\parallel AI$. Therefore, it follows that $F'L$ is also parallel to these lines, and hence perpendicular to $AD$. Hence it suffices to show that $\angle F'I_AD=90^\circ$. Notice that $IN\parallel MV\parallel I_AF'$. Therefore,
\[\angle F'I_AD=\angle F'I_AA+\angle AI_AD=\angle NIA+\angle ANI=90^\circ\]where the second step follows from the fact that $\triangle ADI_A\sim \triangle AIN$.
This post has been edited 1 time. Last edited by KST2003, Mar 1, 2021, 6:11 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MP8148
888 posts
#5
Y by
uhh... I'm sorry?

[asy]
size(8cm);
defaultpen(fontsize(10pt));

pair D = dir(120), K = dir(200), Ia = dir(340), A = foot(D,K,Ia), I = 2A-(A+K)/2, M = (I+Ia)/2, L = extension(D,A,Ia,foot(Ia,D,I)), O = (M+L)/2, F = 2*origin-D;

draw(unitcircle);
draw(D--K--Ia--D--L);
draw(D--I^^Ia--L, dotted);
draw(M--L);
draw(I--O--F, blue);
draw(circumcircle(A,L,M), dotted);

dot("$D$", D, dir(120));
dot("$K$", K, dir(200));
dot("$I_A$", Ia, dir(340));
dot("$A$", A, dir(135));
dot("$I$", I, dir(50));
dot("$M$", M, dir(50));
dot("$L$", L, dir(210));
dot("$O$", O, dir(90));
dot("$F$", F, dir(300));
[/asy]

Let $M = \overline{AI} \cap (ABC)$ and $L = 2O-M$. It is well known that $I$ is the orthocenter of $\triangle DLI_A$.

Use Cartesian Coordinates with $A = (0,0)$, $D = (0,t)$, $K = (-2r,0)$, and $I_A = (r+2s,0)$. It follows that $I = (r,0)$ and $M=\tfrac 12 (I+I_A) = (r+s,0)$.

Set $L = (0,l)$ and using the fact that $\overline{I_AL} \perp \overline{DI}$, we have $$\frac{l-0}{0-(r+2s)} = -\left(\frac{t-0}{0-r}\right)^{-1} = \frac{r}{t} \implies l = \frac{-r(r+2s)}{t}.$$Since the projection of $F$ to $\overline{KI_A}$ and $A$ are reflections over the midpoint of $\overline{KI_A}$, we can set $F = (-r+2s,f)$ for some $f$. Using $\overline{FK} \perp \overline{DK}$ we have $$\frac{f-0}{(-r+2s)-(-2r)} = -\left(\frac{t-0}{0-(-2r)}\right)^{-1} = \frac{-2r}{t} \implies f=\frac{-2r(r+2s)}{t}.$$Finally we compute $$O = \frac{M+L}{2} = \left(\frac{r+s}{2}, \frac{-r(r+2s)}{2t}\right)$$and $$\frac{3I+F}{4} = \left(\frac{3r+(-r+2s)}{4}, \frac{-2r(r+2s)}{4}\right) = \left(\frac{r+s}{2}, \frac{-r(r+2s)}{2t}\right) = O,$$which implies the conclusion.

(I didn't even realize $O$, $I$, $F$ collinear in my initial solution. I guess this makes the finish a bit faster).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LoloChen
477 posts
#6
Y by
An interesting problem.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Anajar
130 posts
#7
Y by
Nice Problem! Here's a different solution.
I'll use the following well-known lemma which can be proved using Pythagorean
Lemma: Let $\ell$ be the radical axis of circles $\omega_1$ and $\omega_2$ with centers $O_1$ and $O_2$, respectively. Let $K$ be an arbitrary point and $H$ be the feet of perpendicular from $K$ to $\ell$. Then the following relation holds:
$$|P_{\omega_1}^K-P_{\omega_2}^K|=2 \cdot KH \cdot O_1O_2$$where $P_{\omega_1}^K$ and $P_{\omega_2}^K$ are the powers of $K$ with respect to $\omega_1$ and $\omega_2$ , respectively.

Back to our problem, Let $M$ and $N$ be the midpoints of arcs $BC$ and $BAC$ in $(ABC)$. Reflect $A$ about $N$ to get $A'$ and reflect $I$ about $A$ to get $I'$. Note that $I'$ lies on $(I_AI_BI_C)$ and $(D,A;I_C,I_B)=-1$ hence:
$$AA'\cdot AD=2AD\cdot AN=2AI_C\cdot AI_B=2AI' \cdot AI_A=AK\cdot AI_A \implies A'\in (DKI_A)$$From above we deduce that $NA'\cdot ND=NA\cdot ND = NI_C\cdot NI_B$, i.e. $NI_A$ is the radical axis of $(DKI_A)$ and $(I_AI_BI_C)$. Let $P$ and $J$ be the centers of $(I_AI_BI_C)$ and $(DKI_A)$, respectively. $P$ is the reflection of $I$ in $O$. Let $(NAI)\cap (IBC)= S$ then $\angle NSI= \angle ISI_A = 90^{\circ}$ so $N$,$S$,$I_A$ are collinear and $D$ lies on $SI$ which is the radical axis of $(NAI)$ and $(IBC)$.
Now note that $DS \perp NI_A \perp JP$ $(*)$ ,so using the lemma for $(DKI_A)$ and $(I_AI_BI_C)$ gives us:
$$2DS\cdot JP= DI_C\cdot DI_B= DB\cdot DC = DI\cdot DS \implies 2JP=DS$$Now using $(*)$ we get that $P$ is the midpoint of $IF$ which proves the problem. $\blacksquare$
[asy]
import graph; size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -30.50203599661605, xmax = 36.988086509371534, ymin = -20.52975480516736, ymax = 21.937920192072717;  /* image dimensions */
pen qqwuqq = rgb(0,0.39215686274509803,0); pen ccqqqq = rgb(0.8,0,0); 

draw((-7.918257438016543,4.482080991735521)--(-8.88,-2.5)--(4.7,-2.36)--cycle, linewidth(1) + blue); 
 /* draw figures */
draw((-7.918257438016543,4.482080991735521)--(-8.88,-2.5), linewidth(1) + blue); 
draw((-8.88,-2.5)--(4.7,-2.36), linewidth(1) + blue); 
draw((4.7,-2.36)--(-7.918257438016543,4.482080991735521), linewidth(1) + blue); 
draw(circle((-2.1163466231053065,0.12562244121474994), 7.255404896116378), linewidth(1)); 
draw(circle((-2.0415526089794893,-7.129396928989609), 8.258067488577074), linewidth(1)); 
draw(circle((1.537960974588422,0.01250230306161964), 14.510809792232754), linewidth(1) + qqwuqq); 
draw(circle((-6.5670347313559985,-1.4243980878217393), 15.461083368596285), linewidth(1) + qqwuqq); 
draw((1.537960974588422,0.01250230306161964)--(-6.5670347313559985,-1.4243980878217393), linewidth(1) + ccqqqq); 
draw((1.687549002840055,-14.497536437347096)--(-3.309638098009838,13.689650545941145), linewidth(1) + blue); 
draw((-21.98064563268787,-2.6350582023988443)--(-8.88,-2.5), linewidth(1) + blue); 
draw((-12.213463872451563,12.96875781647081)--(1.687549002840055,-14.497536437347096), linewidth(1) + blue); 
draw(circle((-3.9808974290150787,3.809692195393495), 3.9943598403161276), linewidth(1)); 
draw((-5.770654220799035,0.23874257936788024)--(8.846576169975876,-0.21373797324463395), linewidth(1) + linetype("2 2")); 
draw((8.846576169975876,-0.21373797324463395)--(-21.98064563268787,-2.6350582023988443), linewidth(1)); 
draw((-21.98064563268787,-2.6350582023988443)--(-1.0726431764524043,1.0716330768970728), linewidth(1) + ccqqqq); 
draw((-21.98064563268787,-2.6350582023988443)--(8.454835435384638,12.768694858834014), linewidth(1) + blue); 
 /* dots and labels */
dot((-7.918257438016543,4.482080991735521),linewidth(3pt) + dotstyle); 
label("$A$", (-9.726322331083686,4.457014332193431), NE * labelscalefactor); 
dot((-8.88,-2.5),linewidth(3pt) + dotstyle); 
label("$B$", (-8.736037683689171,-3.6691169691326836), NE * labelscalefactor); 
dot((4.7,-2.36),linewidth(3pt) + dotstyle); 
label("$C$", (4.917062237596756,-2.555884059447495), NE * labelscalefactor); 
dot((-2.1163466231053065,0.12562244121474994),linewidth(3pt) + dotstyle); 
label("$O$", (-3.5042113874266462,-0.8294182400771179), NE * labelscalefactor); 
dot((-5.770654220799035,0.23874257936788024),linewidth(3pt) + dotstyle); 
label("$I$", (-6.1117493021754585,0.4838146696080706), NE * labelscalefactor); 
dot((1.537960974588422,0.01250230306161964),linewidth(3pt) + dotstyle); 
label("$P$", (1.7011490894654937,0.2635466457634644), NE * labelscalefactor); 
dot((-2.0415526089794893,-7.129396928989609),linewidth(3pt) + dotstyle); 
label("$M$", (-1.8671928968171398,-6.873137326801777), NE * labelscalefactor); 
dot((1.687549002840055,-14.497536437347096),linewidth(3pt) + dotstyle); 
label("$I_A$", (1.9214171133101008,-16.087375837665735), NE * labelscalefactor); 
dot((-21.98064563268787,-2.6350582023988443),linewidth(3pt) + dotstyle); 
label("$D$", (-23.523475857138536,-2.87966964037181), NE * labelscalefactor); 
dot((-2.19114063723112,7.380641811419109),linewidth(3pt) + dotstyle); 
label("$N$", (-1.999353711123904,7.8407666660179185), NE * labelscalefactor); 
dot((-6.5670347313559985,-1.4243980878217393),linewidth(3pt) + dotstyle); 
label("$J$", (-6.604714188016044,-1.2461687068420152), NE * labelscalefactor); 
dot((8.846576169975876,-0.21373797324463395),linewidth(3pt) + dotstyle); 
label("$F$", (9.014047481106447,0.04327862191885823), NE * labelscalefactor); 
dot((-12.213463872451563,12.96875781647081),linewidth(3pt) + dotstyle); 
label("$K$", (-12.52816525089612,13.347467262133073), NE * labelscalefactor); 
dot((8.454835435384638,12.768694858834014),linewidth(3pt) + dotstyle); 
label("$I_B$", (7.565136200034783,10.761537490451909), NE * labelscalefactor); 
dot((3.5359761635542952,10.279202631102693),linewidth(3pt) + dotstyle); 
label("$A'$", (3.2192396754534284,10.572090161691035), NE * labelscalefactor); 
dot((-12.837116709846882,1.9925887640042008),linewidth(3pt) + dotstyle); 
label("$I_C$", (-14.361666184425918,2.157851650827078), NE * labelscalefactor); 
dot((-1.0726431764524043,1.0716330768970728),linewidth(3pt) + dotstyle); 
label("$S$", (-2.5671928968171398,1.2327259506797317), NE * labelscalefactor); 
dot((-10.06586065523405,8.72541940410316),linewidth(3pt) + dotstyle); 
label("$I'$", (-11.898181874446028,8.281302713707131), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SerdarBozdag
892 posts
#8
Y by
This problem is immediate after proving the following one:

Problem: In triangle $ABC, H$ is the orthocenter, $DEF$ is the orthic triangle, $K=EF\cap BC$, $AH \cap (ABC)=D'$, $L$ is the reflection of $D$ across $D'$, $H'$ is the reflection of $H$ across $O$. Prove that $KH'$ is the diameter of $(AKLH')$.

Proof: If $A'$ is the antipode of $A, A'H'AH$ is parallelogram. $H'A' \cap BC=T$, $A'H \cap (ABC)\cap AK=S$, $H'T \perp KT$ and $\angle AKT =\angle AHS=180-\angle AH'T \implies AKH'T$ is a cyclic quadrilateral with diameter $KH'$.$DTA'D'$ is rectangle and $HD=DD'=D'L \implies LT=HA'=AH' \implies AH'TL$ is isoscele trapezoid $\implies LAKH'T$ is a cyclic quadrilateral with diameter $KH'$. $\square$

Apply this to $I_AI_BI_C$ in the main problem. $H$ goes to incenter, $NPC$ center goes to circumcenter, $H$' goes to $F$. $3HN_9=N_9H'$ finishes the proof.
This post has been edited 2 times. Last edited by SerdarBozdag, Aug 31, 2021, 11:38 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#9 • 1 Y
Y by PRMOisTheHardestExam
[asy]
size(10cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -15.777152465116275, xmax = 13.622520316279077, ymin = -7.574804558139522, ymax = 9.695855237209296;  /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0); pen qqwuqq = rgb(0,0.39215686274509803,0); pen zzttff = rgb(0.6,0.2,1); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen ffvvqq = rgb(1,0.3333333333333333,0); 

draw((-9.261462964965936,-0.3118784924573356)--(-0.27488636287179746,-3.563150145672676)--(-1.4253976952768401,4.9661656846100835)--cycle, linewidth(0.8) + zzttqq); 
draw((-6.40199636631604,1.6141380108638088)--(-0.27488636287179746,-3.563150145672676)--(3.5512009757623715,8.318193358356366)--cycle, linewidth(0.8) + fuqqzz); 
draw((-4.5859806511627825,2.837329860465117)--(-3.9,-0.5)--(0.66,-0.66)--cycle, linewidth(0.8) + ffvvqq); 
 /* draw figures */
draw(circle((-1.5391426405552215,1.7244347441761934), 3.243725851970659), linewidth(0.8) + zzttqq); 
draw((-1.4253976952768401,4.9661656846100835)--(-1.6528875858336043,-1.5172961962576965), linewidth(0.8)); 
draw(circle((-3.1626835504002964,2.500093612387794), 6.715824407022325), linewidth(0.8) + linetype("4 4") + blue); 
draw((-0.27488636287179746,-3.563150145672676)--(-1.4253976952768401,4.9661656846100835), linewidth(0.8) + qqwuqq); 
draw((-9.261462964965936,-0.3118784924573356)--(2.936095864165344,5.312065717232924), linewidth(0.8)); 
draw((-3.030888808795411,0.5285577531572829)--(2.936095864165344,5.312065717232924), linewidth(0.8) + linetype("4 4") + zzttff); 
draw((-9.261462964965936,-0.3118784924573356)--(0.66,-0.66), linewidth(0.8)); 
draw((-7.696164335897525,7.454874075080786)--(-0.27488636287179746,-3.563150145672676), linewidth(0.8) + zzttff); 
draw((-4.5859806511627825,2.837329860465117)--(-3.9,-0.5), linewidth(0.8)); 
draw((-9.261462964965936,-0.3118784924573356)--(1.7351852606091023,7.09500150875505), linewidth(0.8)); 
draw((3.5512009757623715,8.318193358356366)--(-0.27488636287179746,-3.563150145672676), linewidth(0.8)); 
draw((1.7351852606091023,7.09500150875505)--(3.5512009757623715,8.318193358356366), linewidth(0.8)); 
draw((-4.5859806511627825,2.837329860465117)--(0.66,-0.66), linewidth(0.8)); 
draw((-9.261462964965936,-0.3118784924573356)--(-0.27488636287179746,-3.563150145672676), linewidth(0.8) + qqwuqq); 
draw((-9.261462964965936,-0.3118784924573356)--(-0.866199607607268,0.8205506288647845), linewidth(0.8)); 
draw((-9.261462964965936,-0.3118784924573356)--(-0.27488636287179746,-3.563150145672676), linewidth(0.8) + zzttqq); 
draw((-0.27488636287179746,-3.563150145672676)--(-1.4253976952768401,4.9661656846100835), linewidth(0.8) + zzttqq); 
draw((-1.4253976952768401,4.9661656846100835)--(-9.261462964965936,-0.3118784924573356), linewidth(0.8) + zzttqq); 
draw((-6.40199636631604,1.6141380108638088)--(-0.27488636287179746,-3.563150145672676), linewidth(0.8)); 
draw((-6.40199636631604,1.6141380108638088)--(-0.27488636287179746,-3.563150145672676), linewidth(0.8) + fuqqzz); 
draw((-0.27488636287179746,-3.563150145672676)--(3.5512009757623715,8.318193358356366), linewidth(0.8) + fuqqzz); 
draw((3.5512009757623715,8.318193358356366)--(-6.40199636631604,1.6141380108638088), linewidth(0.8) + fuqqzz); 
draw((-4.5859806511627825,2.837329860465117)--(-3.9,-0.5), linewidth(0.8) + ffvvqq); 
draw((-3.9,-0.5)--(0.66,-0.66), linewidth(0.8) + ffvvqq); 
draw((0.66,-0.66)--(-4.5859806511627825,2.837329860465117), linewidth(0.8) + ffvvqq); 
draw((-3.1626835504002964,2.500093612387794)--(-0.04739647231503352,2.920311735195104), linewidth(0.8)); 
 /* dots and labels */
dot((-4.5859806511627825,2.837329860465117),dotstyle); 
label("$A$", (-5.526818120930227,3.038081804651164), NE * labelscalefactor); 
dot((-3.9,-0.5),dotstyle); 
label("$B$", (-4.636917711627902,-1.2136645953488312), NE * labelscalefactor); 
dot((0.66,-0.66),dotstyle); 
label("$C$", (1.493507330232564,-1.0488682232558082), NE * labelscalefactor); 
dot((-3.030888808795411,0.5285577531572829),linewidth(4pt) + dotstyle); 
label("$I$", (-2.890076167441855,0.7968511441860501), NE * labelscalefactor); 
dot((-1.6528875858336043,-1.5172961962576965),linewidth(4pt) + dotstyle); 
label("$M$", (-2.5604834232558087,-2.2024428279069697), NE * labelscalefactor); 
dot((-0.27488636287179746,-3.563150145672676),linewidth(4pt) + dotstyle); 
label("$I_A$", (-0.9125197023255758,-4.5755105860465015), NE * labelscalefactor); 
dot((-9.261462964965936,-0.3118784924573356),linewidth(4pt) + dotstyle); 
label("$D$", (-10.239994362790693,-0.9170311255813898), NE * labelscalefactor); 
dot((-7.696164335897525,7.454874075080786),dotstyle); 
label("$K$", (-8.52611209302325,7.8501358697674375), NE * labelscalefactor); 
dot((-1.4253976952768401,4.9661656846100835),linewidth(4pt) + dotstyle); 
label("$P$", (-1.9672164837209247,5.345231013953486), NE * labelscalefactor); 
dot((-1.5391426405552202,1.724434744176194),linewidth(4pt) + dotstyle); 
label("$O$", (-2.3627277767441806,1.8845072000000023), NE * labelscalefactor); 
dot((1.7351852606091023,7.09500150875505),dotstyle); 
label("$A'$", (0.1751363534883778,7.22390965581395), NE * labelscalefactor); 
dot((-6.40199636631604,1.6141380108638088),linewidth(4pt) + dotstyle); 
label("$I_B$", (-7.66917095813953,1.8185886511627931), NE * labelscalefactor); 
dot((3.5512009757623715,8.318193358356366),linewidth(4pt) + dotstyle); 
label("$I_C$", (3.998412186046518,8.50932135813953), NE * labelscalefactor); 
dot((-3.1626835504002964,2.500093612387794),linewidth(4pt) + dotstyle); 
label("$O_1$", (-3.021913265116274,3.1369596279069776), NE * labelscalefactor); 
dot((2.936095864165344,5.312065717232924),linewidth(4pt) + dotstyle); 
label("$F$", (3.4381045209302386,4.949719720930231), NE * labelscalefactor); 
dot((-0.04739647231503352,2.920311735195104),linewidth(4pt) + dotstyle); 
label("$N$", (0.3728920000000057,2.181140669767444), NE * labelscalefactor); 
dot((-0.866199607607268,0.8205506288647845),linewidth(4pt) + dotstyle); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
Let $M$ and $P$ be the midpoint of the minor and major arc $BC$ of $(ABC)$. Let $A'$ be the reflection of $A$ over $P$.
Claim 1. $D,K,I_A$ and $A'$ are concyclic.
Proof.
Let $I_B$ and $I_C$ be the the $B$- and $C$-excenters respectively, then $I$ is the orthocenter of $\triangle I_AI_BI_C$. Meanwhile $P$ is the midpoint of $I_BI_C$.

By a well-known fact, $I$ is the orthocentre of $\triangle DPI_A$. Hence
$$AA'\times AD=2AP\times AD=2AI\times AI_A=AK\times AI_A$$as desired. $\blacksquare$

Now let $O_1$ be the center of $(DKI_AA')$, $l_1$ be the line through $O_1$ parallel to $DI$ while $l_2$ be the line through $P$ perpendicular to $AD$. Let $N$ be the center of $(I_AI_BI_C)$ and $Q$ be the midpoint of $IF$.

Claim 2. Both $N$ and $Q$ lie on $l_1$
Proof.
Obviously $Q$ lies on $l_1$ by midpoint theorem.
\newline\newline For $N$, we notice that
$$PA'\times PD=PA\times PD=PI_B\times PI_C$$Hence $P$ lies on the radical axis of $(I_AI_BI_C)$ and $(DKI_AA')$. Therefore $PI_A$ is the radical axis of these two circles. From above, $DI\perp PI_A$, hence $O_1N\perp DI$ as desired. $\blacksquare$

Claim 3. Both $Q$ and $N$ lie on $l_2$
Proof.
Obviously $N$ lies $l_2$ as $P$ is the midpoint of $I_BI_C$. Now, notice that $FA'$ and $AI$ are both perpendicular to $AD$, hence by intercept theorem, $PN$ is perpendicular to $AD$ as well. $\blacksquare$

Hence $N=Q$ as they are the intersection of $l_1$ and $l_2$. Notice that $N,O,I$ are collinear with $NO:OI=1:1$ by applying Euler line on $\triangle I_AI_BI_C$. Hence $P$ lies on $OI$ with $PO:OI=3:1$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Shayan-TayefehIR
104 posts
#10 • 1 Y
Y by Mahdi_Mashayekhi
Firstly , we'll redefine points with seeing triangle $\triangle I_aI_bI_c$ ( which $I_b$ and $I_c$ are $B$ and $C$ excenters. ) as our $\triangle ABC$. So the new problem will describe like this :
In a triangle $\triangle ABC$ , let $D , E , F$ be foot of altitudes from $A , B , C$ to corresponding sides. Also $H$ and $N$ are orthocenter and nine-point circle center of this triangle , $T$ is intersection point of the lines $EF$ and $BC$ and $K$ is a point on the line $AD$ such that $DK=2HD$. So if the segment $TS$ is the diameter of the circumcircle of triangle $\triangle ATK$ , then $NS=3NH$.

Now if $O$ is the circumcenter of the triangle $\triangle ABC$ , then since $N$ is the midpoint of $OH$ , we'll show that $OH=OS$ ( another word , set point $S$ as the reflection point of $H$ with respect to $O$ and we'll show that $\angle TAS=\angle TKS=90$. )
Let $X$ be the second intersection point of the circumcircle of $\triangle ABC$ and $ AFHE$. So by radical axis theorem in circles $(AFHE) , (ABC) , (BFEC)$ , points $A , X , T$ are collinear , then since $O$ lies on the perpendicular bisector of $AX$ , so $AS \parallel XH$ and $\angle SAT=90$.
Let points $G$ and $M$ be centroid of the triangle and midpoint of segment $BC$ , and the parallel line from $A$ to $BC$ intersect the circumcircle in point $A'$. Also if $H'$ is the reflection of $H$ with respect to $BC$ , then $\angle H'MT=\angle XMD=\angle XAD$ and the quadrilateral $TAMH'$ is cyclic , so by power of the point $D$ with respect to its circumcircle , we have :
$$DA.DK=DT.DM , AA'=2DM , DK=2DH' \implies \triangle DAA' \sim \triangle TDK \implies A'D \perp TK$$Now since $G$ is the nine-point circle and circumcircle's internal homothety center , then $A' , G , D$ are collinear and $GD \perp TK$. As the result , while $HS=3HG$ and $HK=3HD$ , then $GD \parallel SK$ and $\angle SKT=90$. So we're done.
This post has been edited 1 time. Last edited by Shayan-TayefehIR, Aug 23, 2022, 7:10 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pmshw
17 posts
#11
Y by
[asy]
import graph; size(8cm); 
real labelscalefactor = 0.7; 
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); 
pen dotstyle = black; 
real xmin = -9.396979330807888, xmax = 8.090060040405483, ymin = -3.278688246116183, ymax = 5.915886026446351;  /* image dimensions */
pen ccqqqq = rgb(0.8,0,0); pen qqwuqq = rgb(0,0.39215686274509803,0); pen zzttff = rgb(0.6,0.2,1); 

draw((-3.610743543170552,4.516445428145997)--(-5.1,0.13)--(0.98,0.07)--cycle, linewidth(1)); 
draw((0.8037699091061296,0.24069075512234328)--(0.6330791539837861,0.06446066422847296)--(0.8093092448776564,-0.10623009089387044)--(0.98,0.07)--cycle, linewidth(1) + ccqqqq); 
draw((-1.2335836486041638,2.214005388581789)--(-1.4042744037265074,2.037775297687919)--(-1.2280443128326368,1.8670845425655755)--(-1.0573535577102935,2.043314633459446)--cycle, linewidth(1) + ccqqqq); 
draw((-2.3632703007341065,3.3081832711762913)--(-2.53396105585645,3.131953180282421)--(-2.3577309649625793,2.9612624251600774)--(-2.187040209840236,3.137492516053948)--cycle, linewidth(1) + ccqqqq); 
draw((-4.568738324844595,1.6947743781455926)--(-4.336421380557498,1.6158996913455608)--(-4.257546693757466,1.8482166356326584)--(-4.489863638044564,1.9270913224326904)--cycle, linewidth(1) + ccqqqq); 
draw((-3.4238671942732126,-1.4092187187246237)--(-3.4214461803969214,-1.1638893125937881)--(-3.666775586527757,-1.161468298717497)--(-3.669196600404048,-1.4067977048483324)--cycle, linewidth(1) + ccqqqq); 
draw((-3.416354712389387,-0.6479538878302119)--(-3.413933698513096,-0.4026244816993765)--(-3.6592631046439315,-0.40020346782308536)--(-3.6616841185202227,-0.6455328739539208)--cycle, linewidth(1) + ccqqqq); 
draw((-3.40884223050556,0.11331094306419963)--(-3.4064212166292687,0.3586403491950352)--(-3.651750622760104,0.3610613630713262)--(-3.6541716366363954,0.11573195694049077)--cycle, linewidth(1) + ccqqqq); 
draw((-4.867683055712902,0.051125313199967964)--(-4.7888083689128695,0.2834422574870657)--(-5.021125313199968,0.3623169442870977)--(-5.1,0.13)--cycle, linewidth(1) + ccqqqq); 

draw((-3.610743543170552,4.516445428145997)--(-5.1,0.13), linewidth(1)); 
draw((-5.1,0.13)--(0.98,0.07), linewidth(1) + blue); 
draw((0.98,0.07)--(-3.610743543170552,4.516445428145997), linewidth(1)); 
draw(circle((-2.0457984351509038,1.539091904708342), 3.363582494103757), linewidth(1)); 
draw((-3.6616841185202222,-0.6455328739539208)--(-0.9756287274772966,0.08929896770536806), linewidth(1)); 
draw((-2.931257454954593,0.10859793541073612)--(-1.7060553910429255,-0.6648318416592889), linewidth(1)); 
draw((-0.4808533271312583,-1.438261618729315)--(-1.7060553910429255,-0.6648318416592889), linewidth(1) + linetype("4 4")); 
draw((-3.6616841185202222,-0.6455328739539208)--(-1.7060553910429255,-0.6648318416592889), linewidth(1) + blue); 
draw((-3.6691966004040486,-1.4067977048483324)--(-0.4808533271312583,-1.438261618729315), linewidth(1) + blue); 
draw((-0.9756287274772966,0.08929896770536806)--(-1.7060553910429255,-0.6648318416592889), linewidth(1) + qqwuqq); 
draw((-1.7060553910429255,-0.6648318416592889)--(0.24957333643437085,-0.6841308093646574), linewidth(1) + blue); 
draw((-5.1,0.13)--(-2.187040209840236,3.137492516053948), linewidth(1) + qqwuqq); 
draw((-4.489863638044564,1.9270913224326904)--(0.98,0.07), linewidth(1)); 
draw((-1.0573535577102935,2.043314633459446)--(-2.931257454954593,0.10859793541073612), linewidth(1) + linetype("4 4") + qqwuqq); 
draw((-3.610743543170552,4.516445428145997)--(-3.6691966004040486,-1.4067977048483324), linewidth(1)); 
draw((-5.1,0.13)--(-0.4808533271312583,-1.438261618729315), linewidth(1)); 
draw((-0.4808533271312583,-1.438261618729315)--(0.98,0.07), linewidth(1)); 
draw((-3.6616841185202222,-0.6455328739539208)--(-2.931257454954593,0.10859793541073612), linewidth(1) + linetype("4 4") + qqwuqq); 
draw(circle((-2.318656422998759,-0.278116953124277), 1.3923784865534181), linewidth(1) + zzttff); 
draw(circle((-0.9756287274772966,0.08929896770536806), 1.955723950328615), linewidth(1) + zzttff); 
draw((-3.610743543170552,4.516445428145997)--(-1.933062309015237,-1.616038860067298), linewidth(1)); 

dot((-3.610743543170552,4.516445428145997),dotstyle); 
label("$D$", (-3.5679662070700973,4.632115278956488), NE * labelscalefactor); 
dot((-5.1,0.13),dotstyle); 
label("$K$", (-5.048350492463822,0.2487899339235315), NE * labelscalefactor); 
dot((0.98,0.07),dotstyle); 
label("$I_A$", (1.023538178096376,0.19096242277533945), NE * labelscalefactor); 
dot((-3.6541716366363954,0.11573195694049077),linewidth(4pt) + dotstyle); 
label("$A$", (-3.602662713759013,0.20252792500497785), NE * labelscalefactor); 
dot((-3.6391466728687423,1.638261618729313),linewidth(4pt) + dotstyle); 
label("$H$", (-3.5910972115293744,1.7291742193172477), NE * labelscalefactor); 
dot((-3.6691966004040486,-1.4067977048483324),linewidth(4pt) + dotstyle); 
label("$E$", (-3.6257937182182896,-1.3125528670776534), NE * labelscalefactor); 
dot((-3.6616841185202222,-0.6455328739539208),linewidth(4pt) + dotstyle); 
label("$N$", (-3.614228215988651,-0.5492297199215186), NE * labelscalefactor); 
dot((-2.931257454954593,0.10859793541073612),linewidth(4pt) + dotstyle); 
label("$I$", (-2.8856015755214273,0.20252792500497785), NE * labelscalefactor); 
dot((-0.9756287274772966,0.08929896770536806),linewidth(4pt) + dotstyle); 
label("$T$", (-0.9310316987125258,0.17939692054570103), NE * labelscalefactor); 
dot((-2.3186564229987594,-0.27811695312427637),linewidth(4pt) + dotstyle); 
label("$O$", (-2.2726299573505884,-0.190699150802728), NE * labelscalefactor); 
dot((-1.7060553910429255,-0.6648318416592889),linewidth(4pt) + dotstyle); 
label("$I'$", (-1.6596583391797495,-0.5723607243807954), NE * labelscalefactor); 
dot((-0.4808533271312583,-1.438261618729315),linewidth(4pt) + dotstyle); 
label("$F$", (-0.4337151028380715,-1.3472493737665687), NE * labelscalefactor); 
dot((0.24957333643437085,-0.6841308093646574),linewidth(4pt) + dotstyle); 
label("$M$", (0.2949115376291522,-0.5954917288400723), NE * labelscalefactor); 
dot((-2.187040209840236,3.137492516053948),linewidth(4pt) + dotstyle); 
label("$X$", (-2.1454094328245654,3.232689509170241), NE * labelscalefactor); 
dot((-4.489863638044564,1.9270913224326904),linewidth(4pt) + dotstyle); 
label("$Y$", (-4.446944376522621,2.018311775058208), NE * labelscalefactor); 
dot((-1.0573535577102935,2.043314633459446),linewidth(4pt) + dotstyle); 
label("$G$", (-1.011990214319995,2.1339667973545917), NE * labelscalefactor); 
dot((-1.933062309015237,-1.616038860067298),linewidth(4pt) + dotstyle); 
label("$B$", (-1.8909683837725189,-1.520731907211145), NE * labelscalefactor); 
dot((-2.6678265856212415,1.0697695581781308),linewidth(4pt) + dotstyle); 
label("$C$", (-2.6195950242397426,1.1624646100649656), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 [/asy]

$\textbf{Claim}$: $N,I,G$ are collinear.
Proof:
$DG.DI_A=DC.DB=DA.DN$ so $\angle NGI_A=90=\angle IGI_A$ hence this proves the claim.

$\textbf{Claim}$: $AN=EN$
Proof:
We have $KH||NL$ so we have $\triangle KAH \sim \triangle ANL$ so We have $AN=\frac{AH.AL}{KA}=\frac{AH}{2}=\frac{AE}{2}$.

$\textbf{Claim}$: $F,I,O$ are collinear and $\frac{IF}{II'}=2$
Proof:
We have: $AN=NE$ so $I_AM=MF=TI'=NI$ so $\frac{I_AF}{I'T}=\frac{2NI}{NI}=2=\frac{II_A}{IT}$ and this proves the claim and subsequently the problem ($OF=OI'+I'F=3OI$).
This post has been edited 4 times. Last edited by Pmshw, Sep 2, 2022, 10:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Infinityfun
100 posts
#13
Y by
It seemed straightforward to bash.
Let $F'$ be a point on $IO$ such that $3 IO = OF'$
We want to show that $F=F'$
Let $E$ and $L$ be the midpoint of arcs $BC$ such that $ADE$ are collinear.
Let $AE$ and $BC$ intersect circumcircle of $DI_AK$ at $M$ and $X$.
By using Power of a point it is easy but time consuming to show that $AE=EM$ hence $F'M\perp AE$
Let $L'$ be a point on $IL$ such that $3IL=LL'$
Again using power of a point we can show that $L'X \perp BC$ hence $F'X\perp BC$
We can finish by saying that circle $(DKMF'XI_A) has diameter DF'$ so $F=F'$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
VicKmath7
1386 posts
#14
Y by
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
IMUKAT
85 posts
#15 • 1 Y
Y by flippantsummit67
Let $N$ be the midpoint of arc $BAC$ and let $M$ be the midpoint of arc $BC$. It is easy to see that $D$, $A$, and $N$ are colinear.

Let $Q$ be the intersection of $DI_A$ with $(BIC)$. By power of a point, $DA\cdot DN=DB\cdot DC= DQ\cdot DI_A $ so $ANI_AQ$ is cyclic.

Now, since $II_A$ is a diameter of $(BIC)$ we have $\angle IQI_A=90$ but also $\angle NQI_A=\angle NAI_A=\angle NAM=90$ which implies that $N$, $Q$, and $I$ are colinear.

Let $T$ be the intersection of $NQ$ with $(ABC)$. Since $\angle NTM=\angle NQI_A=90$ we have $TM\parallel QI_A$.

Now, we take an homothety with center $I$ and factor $\frac{1}{2}$ which sends $K$ to $K'$, $D$ to $D'$ and $A$ to $L$. Let $I'$ be the reflection of $I$ over $O$. I claim $I'$ is the image of $F$ under this homothety which finishes the problem.

Note that $NIMI'$ is a parallelogram. First, we see $\angle I'MD'=\angle I'MN+\angle NMT=\angle TNM+\angle NMT= 90.$

Let $D'L$ meet $NI'$ at $P$. Since $NI'$ is parallel to $IM$ and $AN$ and $LP$ are both perpendicular to $AI$, $ANPL$ is a rectangle.

Hence $\angle D'PI'=90$ so $D'PI'M$ is cyclic. It suffices to show that $K'$ lies on this circle or equivalently, $LK'\cdot LM=LD'\cdot LP$. This is also equivalent to $AI\cdot LM=LD'\cdot AN$.

Finally, $\angle AIN=\angle TIM=90-\angle IMT=\angle LD'M$ so $D'LM \sim AIN$ and we are done.
Z K Y
N Quick Reply
G
H
=
a