Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
6 variable inequality
ChuongTk17   3
N 43 minutes ago by ChuongTk17
Source: Own
Given real numbers a,b,c,d,e,f in the interval [-1;1] and positive x,y,z,t such that $$2xya+2xzb+2xtc+2yzd+2yte+2ztf=x^2+y^2+z^2+t^2$$. Prove that: $$a+b+c+d+e+f \leq 2$$
3 replies
ChuongTk17
Nov 29, 2024
ChuongTk17
43 minutes ago
Arbitrary point on BC and its relation with orthocenter
falantrng   25
N an hour ago by EeEeRUT
Source: Balkan MO 2025 P2
In an acute-angled triangle \(ABC\), \(H\) be the orthocenter of it and \(D\) be any point on the side \(BC\). The points \(E, F\) are on the segments \(AB, AC\), respectively, such that the points \(A, B, D, F\) and \(A, C, D, E\) are cyclic. The segments \(BF\) and \(CE\) intersect at \(P.\) \(L\) is a point on \(HA\) such that \(LC\) is tangent to the circumcircle of triangle \(PBC\) at \(C.\) \(BH\) and \(CP\) intersect at \(X\). Prove that the points \(D, X, \) and \(L\) lie on the same line.

Proposed by Theoklitos Parayiou, Cyprus
25 replies
falantrng
Apr 27, 2025
EeEeRUT
an hour ago
Hard inequality
JK1603JK   2
N an hour ago by arqady
Source: unknown?
Let $a,b,c\in R: abc\neq 0$ and $a+b+c=0$ then prove $$|\frac{a-b}{c}|+|\frac{b-c}{a}|+|\frac{c-a}{b}|\ge 6$$
2 replies
JK1603JK
2 hours ago
arqady
an hour ago
BMO 2024 SL A5
MuradSafarli   2
N an hour ago by ja.


Let \(\mathbb{R}^+ = (0, \infty)\) be the set of positive real numbers.
Find all non-negative real numbers \(c \geq 0\) such that there exists a function \(f : \mathbb{R}^+ \to \mathbb{R}^+\) with the property:
\[
f(y^2f(x) + y + c) = xf(x+y^2)
\]for all \(x, y \in \mathbb{R}^+\).

2 replies
MuradSafarli
Apr 27, 2025
ja.
an hour ago
Inequalities
sqing   5
N 5 hours ago by pooh123
Let $a,b,c> 0$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1.$ Prove that
$$  (1-abc) (1-a)(1-b)(1-c)  \ge 208 $$$$ (1+abc) (1-a)(1-b)(1-c)  \le -224 $$$$(1+a^2b^2c^2) (1-a)(1-b)(1-c)  \le -5840 $$
5 replies
sqing
Jul 12, 2024
pooh123
5 hours ago
Amc 10 mock
Mathsboy100   4
N 5 hours ago by pooh123
let \[\lfloor  x   \rfloor\]denote the greatest integer less than or equal to x . What is the sum of the squares of the real numbers x for which \[  x^2 - 20\lfloor x \rfloor + 19 = 0  \]
4 replies
Mathsboy100
Oct 9, 2024
pooh123
5 hours ago
Inequalities
sqing   0
5 hours ago
Let $ a,b,c>0 . $ Prove that
$$ \left(1 +\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right )\geq 4\left(\frac{a+b}{b+c}+ \frac{b+c}{a+b}\right)$$$$ \left(1 +\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right )\geq \frac{32}{9}\left(\frac{a+b}{b+c}+ \frac{c+a}{a+b}\right)$$$$ \left(1 +\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right )\geq  \frac{8}{3}\left(  \frac{a+b}{b+c}+ \frac{b+c}{c+a}+ \frac{c+a}{a+b}\right)$$$$ \left(1 +\frac{a^2}{b^2}\right)\left(1+\frac{b^2}{c^2}\right)\left(1+\frac{c^2}{a^2}\right )\geq \frac{8}{3}\left(  \frac{a^2+bc}{b^2+ca}+\frac{b^2+ca}{c^2+ab}+\frac{c^2+ab}{a^2+bc}\right)$$
0 replies
sqing
5 hours ago
0 replies
Purple Comet High School Math Meet 2024 P1
franklin2013   3
N 6 hours ago by codegirl2013
Joe ate one half of a fifth of a pizza. Gale ate one third of a quarter of that pizza. The difference in the amounts that the two ate was $\frac{1}{n}$ of the pizza, where $n$ is a positive integer. Find $n$.
3 replies
franklin2013
Yesterday at 11:20 PM
codegirl2013
6 hours ago
Cool vieta sum
Kempu33334   0
6 hours ago
Let the roots of \[\mathcal{P}(x) = x^{108}+x^{102}+x^{96}+2x^{54}+3x^{36}+4x^{24}+5x^{18}+6\]be $r_1, r_2, \dots, r_{108}$. Find \[\dfrac{r_1^6+r_2^6+\dots+r_{108}^6}{r_1^6r_2^6+r_1^6r_3^6+\dots+r_{107}^6r_{108}^6}\]without Newton Sums.
0 replies
Kempu33334
6 hours ago
0 replies
Inequality, tougher than it looks
tom-nowy   2
N Yesterday at 11:28 PM by pooh123
Prove that for $a,b \in \mathbb{R}$
$$ 2(a^2+1)(b^2+1) \geq 3(a+b). $$Is there an elegant way to prove this?
2 replies
tom-nowy
Apr 29, 2025
pooh123
Yesterday at 11:28 PM
Stylish Numbers
pedronis   3
N Yesterday at 10:58 PM by pedronis
A positive even integer $n$ is called stylish if the set $\{1, 2, \ldots, n\}$ can be partitioned into $\frac{n}{2}$ pairs such that the sum of the elements in each pair is a power of $3$. For example, $6$ is stylish because the set $\{1, 2, 3, 4, 5, 6\}$ can be partitioned as $\{1,2\}, \{3,6\}, \{4,5\}$, with sums $3$, $9$, and $9$ respectively. Determine the number of stylish numbers less than $3^{2025}$.
3 replies
pedronis
Apr 13, 2025
pedronis
Yesterday at 10:58 PM
Transformation of a cross product when multiplied by matrix A
Math-lover1   2
N Yesterday at 9:23 PM by Math-lover1
I was working through AoPS Volume 2 and this statement from Chapter 11: Cross Products/Determinants confused me.
[quote=AoPS Volume 2]A quick comparison of $|\underline{A}|$ to the cross product $(\underline{A}\vec{i}) \times (\underline{A}\vec{j})$ reveals that a negative determinant [of $\underline{A}$] corresponds to a matrix which reverses the direction of the cross product of two vectors.[/quote]
I understand that this is true for the unit vectors $\vec{i} = (1 \ 0)$ and $\vec{j} = (0 \ 1)$, but am confused on how to prove this statement for general vectors $\vec{v}$ and $\vec{w}$ although its supposed to be a quick comparison.

How do I prove this statement easily with any two 2D vectors?
2 replies
Math-lover1
Tuesday at 10:29 PM
Math-lover1
Yesterday at 9:23 PM
unfair coin, points winning 2024 TMC AIME Mock #9
parmenides51   5
N Yesterday at 8:44 PM by Math-lover1
Krithik has an unfair coin with a $\frac13$ chance of landing heads when flipped. Krithik is playing a game where he starts with $1$ point. Every turn, he flips the coin, and if it lands heads, he gains $1$ point, and if it lands tails, he loses $1$ point. However, after the turn, if he has a negative number of points, his point counter resets to $1$. Krithik wins when he earns $8$ points. Find the expected number of turns until Krithik wins.
5 replies
parmenides51
Apr 26, 2025
Math-lover1
Yesterday at 8:44 PM
BrUMO 2025 Team Round Problem 15
lpieleanu   1
N Yesterday at 8:01 PM by vanstraelen
Let $\triangle{ABC}$ be an isosceles triangle with $AB=AC.$ Let $D$ be a point on the circumcircle of $\triangle{ABC}$ on minor arc $AB.$ Let $\overline{AD}$ intersect the extension of $\overline{BC}$ at $E.$ Let $F$ be the midpoint of segment $AC,$ and let $G$ be the intersection of $\overline{EF}$ and $\overline{AB}.$ Let the extension of $\overline{DG}$ intersect $\overline{AC}$ and the circumcircle of $\triangle{ABC}$ at $H$ and $I,$ respectively. Given that $DG=3, GH=5,$ and $HI=1,$ compute the length of $\overline{AE}.$
1 reply
lpieleanu
Apr 27, 2025
vanstraelen
Yesterday at 8:01 PM
determine the ratio
moldovan   1
N Jun 30, 2009 by hinhhoc273
Source: Netherlands 1993
In a triangle $ ABC$ with $ \angle A=90^{\circ}$, $ D$ is the midpoint of $ BC$, $ F$ that of $ AB$, $ E$ that of $ AF$ and $ G$ that of $ FB$. Segment $ AD$ intersects $ CE,CF$ and $ CG$ in $ P,Q$ and $ R$, respectively. Determine the ratio: $ \frac{PQ}{QR}$.
1 reply
moldovan
Jun 28, 2009
hinhhoc273
Jun 30, 2009
determine the ratio
G H J
G H BBookmark kLocked kLocked NReply
Source: Netherlands 1993
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
moldovan
1311 posts
#1 • 1 Y
Y by Adventure10
In a triangle $ ABC$ with $ \angle A=90^{\circ}$, $ D$ is the midpoint of $ BC$, $ F$ that of $ AB$, $ E$ that of $ AF$ and $ G$ that of $ FB$. Segment $ AD$ intersects $ CE,CF$ and $ CG$ in $ P,Q$ and $ R$, respectively. Determine the ratio: $ \frac{PQ}{QR}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hinhhoc273
33 posts
#2 • 2 Y
Y by Adventure10, Mango247
Just use Menelauyt for triangle AFQ with secants EPC and GRC so PQ=1/4 AQ, QR=1/8 AQ so
PQ/QR=2
Z K Y
N Quick Reply
G
H
=
a