Y by Mango247
In triangle
, the point
lies on segment
such that
is the angle bisector of angle
. The perpendicular bisector of segment
intersects the line
in
. Suppose that
and
.
(a) Prove that
.
(b) Prove that
.
![[asy]
unitsize(1 cm);
pair A, B, C, D, E;
A = (0,0);
B = (2,0);
C = (1.8,1.8);
D = extension(C, incenter(A,B,C), A, B);
E = extension((C + D)/2, (C + D)/2 + rotate(90)*(C - D), A, B);
draw((E + (0.5,0))--A--C--B);
draw(C--D);
draw(interp((C + D)/2,E,-0.3)--interp((C + D)/2,E,1.2));
dot("$A$", A, SW);
dot("$B$", B, S);
dot("$C$", C, N);
dot("$D$", D, S);
dot("$E$", E, S);
[/asy]](//latex.artofproblemsolving.com/2/6/8/268cd54873268b25f39a65a26bebdbb6a2ade3d0.png)










(a) Prove that

(b) Prove that

![[asy]
unitsize(1 cm);
pair A, B, C, D, E;
A = (0,0);
B = (2,0);
C = (1.8,1.8);
D = extension(C, incenter(A,B,C), A, B);
E = extension((C + D)/2, (C + D)/2 + rotate(90)*(C - D), A, B);
draw((E + (0.5,0))--A--C--B);
draw(C--D);
draw(interp((C + D)/2,E,-0.3)--interp((C + D)/2,E,1.2));
dot("$A$", A, SW);
dot("$B$", B, S);
dot("$C$", C, N);
dot("$D$", D, S);
dot("$E$", E, S);
[/asy]](http://latex.artofproblemsolving.com/2/6/8/268cd54873268b25f39a65a26bebdbb6a2ade3d0.png)
This post has been edited 1 time. Last edited by nsato, Feb 13, 2023, 6:43 PM