Y by son7, Adventure10, Mango247, and 1 other user
In acute triangle
,
. Let
be the midpoint of side
. The exterior angle bisector of
meet ray
at
. Point
and
lie on line
such that
and
. Prove that
.
![[asy]
defaultpen(fontsize(10)); size(7cm);
pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P);
draw(K--M--F--P--B--A--C);
pair point = I;
pair[] p={A,B,C,M,P,F,K};
string s = "A,B,C,M,P,F,K";
int size = p.length;
real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;}
string[] k= split(s,",");
for(int i = 0;i<p.length;++i) {
label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i]));
}[/asy]](//latex.artofproblemsolving.com/7/1/a/71a58ef13c038d281ec7f6c65e9e46f843d7ce5c.png)













![[asy]
defaultpen(fontsize(10)); size(7cm);
pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P);
draw(K--M--F--P--B--A--C);
pair point = I;
pair[] p={A,B,C,M,P,F,K};
string s = "A,B,C,M,P,F,K";
int size = p.length;
real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;}
string[] k= split(s,",");
for(int i = 0;i<p.length;++i) {
label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i]));
}[/asy]](http://latex.artofproblemsolving.com/7/1/a/71a58ef13c038d281ec7f6c65e9e46f843d7ce5c.png)
Stay ahead of learning milestones! Enroll in a class over the summer!
Something appears to not have loaded correctly.