Y by Adventure10
Consider a sequence of circles
of radii
, respectively, situated inside a triangle
. The circle
is tangent to
and
;
is tangent to
,
, and
;
is tangent to
,
, and
;
is tangent to
,
, and
; etc.
(a) Prove the relation
![\[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \]](//latex.artofproblemsolving.com/4/b/5/4b58ea2f504c79401d29ff70f96fb43d1ef9fb02.png)
where
is the radius of the incircle of the triangle
. Deduce the existence of a
such that
![\[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\]](//latex.artofproblemsolving.com/4/3/2/4324c7c175cd2615abffcdf495eaba738dc8ff9b.png)
(b) Prove that the sequence of circles
is periodic.


















(a) Prove the relation
![\[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \]](http://latex.artofproblemsolving.com/4/b/5/4b58ea2f504c79401d29ff70f96fb43d1ef9fb02.png)
where



![\[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\]](http://latex.artofproblemsolving.com/4/3/2/4324c7c175cd2615abffcdf495eaba738dc8ff9b.png)
(b) Prove that the sequence of circles
