Y by justJen, Adventure10, Mango247
Let
be a convex hexagon in which diagonals
are concurrent at
. Suppose
is geometric mean of
and
and
is geometric mean of
and
. Prove that
is the geometric mean of
and
.
(Here
denotes are of
)



![$[OAF]$](http://latex.artofproblemsolving.com/f/b/3/fb3577a9a3f4689811450b830814a5ace70a5302.png)
![$[OAB]$](http://latex.artofproblemsolving.com/7/0/3/7035536597a323b14dc2eedd240495706cac0644.png)
![$[OEF]$](http://latex.artofproblemsolving.com/b/4/3/b43d3d307c3eaf48190cb5e98c16cb5965d79db4.png)
![$[OBC]$](http://latex.artofproblemsolving.com/e/4/3/e43619e424bc47e0f4169076608c7eacec0468b2.png)
![$[OAB]$](http://latex.artofproblemsolving.com/7/0/3/7035536597a323b14dc2eedd240495706cac0644.png)
![$[OCD]$](http://latex.artofproblemsolving.com/e/4/6/e466479f4453556b3c074ecdbc754641582c335a.png)
![$[OED]$](http://latex.artofproblemsolving.com/9/b/0/9b0c34725e25a59f0af0108dba98a15cc764d287.png)
![$[OCD]$](http://latex.artofproblemsolving.com/e/4/6/e466479f4453556b3c074ecdbc754641582c335a.png)
![$[OEF]$](http://latex.artofproblemsolving.com/b/4/3/b43d3d307c3eaf48190cb5e98c16cb5965d79db4.png)
(Here
![$[XYZ]$](http://latex.artofproblemsolving.com/c/7/6/c7608a3e97e44fc5bcf0cd62a1f7dfc0a0a2e7d4.png)
