Y by luofangxiang, Adventure10, Mango247
Let
,
and
are non-negatives such that
. Prove that:
1)![\[\sum_{cyc}\sqrt{a^2+b^2}\leq\frac{11(a^2+b^2+c^2)+7(ab+ac+bc)}{3\sqrt2(a+b+c)}\]](//latex.artofproblemsolving.com/4/3/3/433e1cd5ff26aa0dc20d67a78856870d0e46c439.png)
2)![\[\sum_{cyc}\sqrt{a^2+7ab+b^2}\leq\frac{2(a^2+b^2+c^2)+7(ab+ac+bc)}{a+b+c}\]](//latex.artofproblemsolving.com/2/b/e/2bec411802cbe089dffc05bf1d92ec6936cfce3c.png)
3)![\[\sum_{cyc}\sqrt{4a^2+ab+4b^2}\leq\frac{5(a^2+b^2+c^2)+4(ab+ac+bc)}{a+b+c}\]](//latex.artofproblemsolving.com/b/7/d/b7dd891c0d169bf766725197b6ca0eaff79ad7a8.png)




1)
![\[\sum_{cyc}\sqrt{a^2+b^2}\leq\frac{11(a^2+b^2+c^2)+7(ab+ac+bc)}{3\sqrt2(a+b+c)}\]](http://latex.artofproblemsolving.com/4/3/3/433e1cd5ff26aa0dc20d67a78856870d0e46c439.png)
2)
![\[\sum_{cyc}\sqrt{a^2+7ab+b^2}\leq\frac{2(a^2+b^2+c^2)+7(ab+ac+bc)}{a+b+c}\]](http://latex.artofproblemsolving.com/2/b/e/2bec411802cbe089dffc05bf1d92ec6936cfce3c.png)
3)
![\[\sum_{cyc}\sqrt{4a^2+ab+4b^2}\leq\frac{5(a^2+b^2+c^2)+4(ab+ac+bc)}{a+b+c}\]](http://latex.artofproblemsolving.com/b/7/d/b7dd891c0d169bf766725197b6ca0eaff79ad7a8.png)
This post has been edited 1 time. Last edited by arqady, Aug 29, 2011, 1:03 PM
Stay ahead of learning milestones! Enroll in a class over the summer!
Something appears to not have loaded correctly.