Y by Davi-8191, Adventure10
Prove that, for all convex pentagons
with area 1, there are indices
and
(assume
and
) such that:
![\[ \text{Area of} \ \triangle P_i P_{i+1} P_{i+2} \le \frac{5 - \sqrt 5}{10} \le \text{Area of} \ \triangle P_j P_{j+1} P_{j+2}\]](//latex.artofproblemsolving.com/f/8/4/f84421948054d50c094ecd8eae9c77669d500dbe.png)





![\[ \text{Area of} \ \triangle P_i P_{i+1} P_{i+2} \le \frac{5 - \sqrt 5}{10} \le \text{Area of} \ \triangle P_j P_{j+1} P_{j+2}\]](http://latex.artofproblemsolving.com/f/8/4/f84421948054d50c094ecd8eae9c77669d500dbe.png)
Stay ahead of learning milestones! Enroll in a class over the summer!
\[\begin{align*} \frac{5-\sqrt{5}}{10} > [P_{i-1}P_iP_{i+1}] > [R_{i-1}P_iR_{i+1}] &= [Q_{i-1}P_iQ_{i+1}]+[Q_{i-1}P_iR_{i-1}]+[Q_{i+1}P_iR_{i+1}] \\ &= r^2[P_{i-2}P_iP_{i+2}]+r[P_iR_{i-1}P_{i-2}]+r[P_iR_{i+1}P_{i+2}] \\ &= (r^2-r)[P_{i-2}P_iP_{i+2}]+r[P_iP_{i+1}P_{i+2}P_{i-2}P_{i-1}] \\ &= (r^2-r)[P_{i-2}P_iP_{i+2}]+r \\ &= (r^2-r)\frac{t^2\phi\sin{72^\circ}}{2}+r\\ &= -rs\frac{t^2\phi\sin{72^\circ}}{2}+r = -r\frac{5-\sqrt{5}}{5t^2\phi\sin{72^\circ}}\frac{t^2\phi\sin{72^\circ}}{2}+r = r\left(\frac{5+\sqrt{5}}{10}\right) \end{align*},\]whence
Something appears to not have loaded correctly.