Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
inequalities
pennypc123456789   4
N 6 minutes ago by KhuongTrang
If $a,b,c$ are positive real numbers, then
$$
\frac{a + b}{a + 7b + c} + \dfrac{b + c}{b + 7c + a}+\dfrac{c + a}{c + 7a + b} \geq \dfrac{2}{3}$$
we can generalize this problem
4 replies
pennypc123456789
Yesterday at 1:53 PM
KhuongTrang
6 minutes ago
2 var inquality
sqing   1
N 18 minutes ago by sqing
Source: Own
Let $ a,b\geq 0 $ and $ a+ b+ab+a^2+b^2=5. $ Prove that
$$ (9+\sqrt{21} ) (a+b-2)(5- 2ab) \ge 10(a-1)(b-1)(a-b)$$$$ (9+\sqrt{21} ) (a+b-2)(3- ab) \ge6(a-1)(b-1)(a-b)$$
1 reply
sqing
2 hours ago
sqing
18 minutes ago
Perfect Square Function
Miku3D   16
N an hour ago by MathLuis
Source: 2021 APMO P5
Determine all Functions $f:\mathbb{Z} \to \mathbb{Z}$ such that $f(f(a)-b)+bf(2a)$ is a perfect square for all integers $a$ and $b$.
16 replies
+1 w
Miku3D
Jun 9, 2021
MathLuis
an hour ago
2 var inquality
sqing   4
N an hour ago by sqing
Source: Own
Let $ a,b\geq 0 $ and $ a+ b+2ab=4 . $ Prove that
$$ 3(a+b-2)(2 -  ab) \ge (a-1)(b-1)(a-b)$$$$ 9 (a+b-2)(3 - 2ab) \ge 2\sqrt 5(a-1)(b-1)(a-b)$$$$9(a+b-2)(6 - 5ab) \ge2\sqrt {14} (a-1)(b-1)(a-b)$$
4 replies
sqing
2 hours ago
sqing
an hour ago
No more topics!
Excenters
syk0526   7
N Jan 3, 2021 by DNCT1
Source: FKMO 2013 #4
For a triangle $ ABC $, let $ B_1 ,C_1 $ be the excenters of $ B, C $. Line $B_1 C_1 $ meets with the circumcircle of $ \triangle ABC $ at point $ D (\ne A) $. $ E $ is the point which satisfies $ B_1 E \bot CA $ and $ C_1 E \bot AB $. Let $ w $ be the circumcircle of $ \triangle ADE $. The tangent to the circle $ w $ at $ D $ meets $ AE $ at $ F $. $ G , H $ are the points on $ AE, w $ such that $ DGH \bot AE $. The circumcircle of $ \triangle HGF $ meets $ w $ at point $ I ( \ne H ) $, and $ J $ be the foot of perpendicular from $ D $ to $ AH $. Prove that $ AI $ passes the midpoint of $ DJ $.
7 replies
syk0526
Mar 24, 2013
DNCT1
Jan 3, 2021
Source: FKMO 2013 #4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
syk0526
202 posts
#1 • 1 Y
Y by Adventure10
For a triangle $ ABC $, let $ B_1 ,C_1 $ be the excenters of $ B, C $. Line $B_1 C_1 $ meets with the circumcircle of $ \triangle ABC $ at point $ D (\ne A) $. $ E $ is the point which satisfies $ B_1 E \bot CA $ and $ C_1 E \bot AB $. Let $ w $ be the circumcircle of $ \triangle ADE $. The tangent to the circle $ w $ at $ D $ meets $ AE $ at $ F $. $ G , H $ are the points on $ AE, w $ such that $ DGH \bot AE $. The circumcircle of $ \triangle HGF $ meets $ w $ at point $ I ( \ne H ) $, and $ J $ be the foot of perpendicular from $ D $ to $ AH $. Prove that $ AI $ passes the midpoint of $ DJ $.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
leader
339 posts
#2 • 2 Y
Y by Adventure10, Mango247
first of all we angle chase that $EB_{1}=EC_{1}$ then by projecting $B_{1},C_{1}$ to $BC$ in $B',C'$ we have $B'C=C'B$(well known for excircles) but $D$ is the midpoint of arc $BAC$ so $D$ project on to $BC$ in the midpoint of $BC$ therefore $D$ is the midpoint of $B_{1}C_{1}$ so $\angle EDA=90$ now $H$ is the symmetric point of $G$ wrt $AE$ and $G$ is the midpoint of $DH$ now let $M$ be the midpoint of $DJ$ we have $\angle DMG=\angle DJH=90$ let $K$ be the second intersection point of circle $DMG$ and line $AM$ we may assume that $M-I-A$ because it's done similarly in other cases. we are goint to prove that $K=I$ since $180-\angle AKD=\angle MKD=\angle MGD=\angle AHD=\angle AED$ so $K$ is on $w$. since $\angle DKG=\angle DMG=90=\angle AKM$ we have $\angle GKE=\angle MKD=\angle AED=x$ and $\angle AKH=\angle ADH=\angle AED=x$ so $\angle GKH=\angle EKA-2x=90-2x$ but since $\angle FHA=\angle ADH=x$ and $\angle FGH=90$ and $\angle AHD=x$ we have $\angle GFH=90-2x=\angle GHK$ so $K$ is on the circle $HGF$ therefore $K=I$ and clearly $AI$ bisects $DJ$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bah_luckyboy
49 posts
#3 • 2 Y
Y by Adventure10, Mango247
Using the same assumption as leader (until $M$), we first note that $\angle FIH=\angle FGH=90$. Now suppose that $N$ is the second intersection point of $FI$ and $w$, hence $\angle HIN=90$. It implies that $HN$ is the diameter of $w$. Since $AE$ is a diameter too, then $AN||HE$. We know that $HE$ is perpendicular to $HA$, then $AN\bot HA\rightarrow AN||DJ$. Note also that $HF$ is tangent to $w$ since $HF=HD$. By the well known lemma, $(I,N;H,F)$ is harmonic. Using pencil $(AI,AN;AH,AF)$, it intersects $DJ$ at $(M,\infty ;J,D)$. Hence $M$ is the midpoint of $DJ$ and we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
v_Enhance
6872 posts
#4 • 3 Y
Y by Adventure10, Mango247, and 1 other user
Well, first let's get rid of the concrete...

Let $A_1$ be the $A$-excenter. Then $\triangle ABC$ is the orthic triangle of $A_1B_1C_1$, and in particular its circumcircle is the nine-point circle of $A_1B_1C_1$. So $D$ is just the midpoint of $B_1C_1$ and $E$ is the circumcenter.

In other words, $\overline{AE}$ is a diameter of $\omega$. Now we can ignore $B_1$, $C_1$, $B$, $C$. Oops.

[asy]size(8cm); 
real lsf=0.8000; 
real lisf=2011.0; 
defaultpen(fontsize(10pt));

/* Initialize Objects */
pair O = (0.0, 0.0);
pair A = (-1.0, 0.0);
pair E = (1.0, 0.0);
pair D = (-0.5999999999999999, -0.8000000000000002);
pair H = (2)*(foot(D,A,E))-D;
pair F = (2)/(H+D);
pair G = (H+D)/(2);
pair J = foot(D,A,H);
pair M = (D+J)/(2);
pair I = (2)*(foot(O,A,M))-A;
pair D_1 = IntersectionPoint(Line(D,A,lisf),Line(H,E,lisf));
pair N = midpoint(D_1--H);

/* Draw objects */
draw(CirclebyRadius(O,1));
draw(E--F);
draw(F--D);
draw(F--H);
draw(H--J);
draw(J--D);
draw(A--M);
draw(D--H);
draw(circumcircle(F,G,H));
draw(D--D_1);
draw(E--D_1);

/* Place dots on each point */
dot(O);
dot(A);
dot(E);
dot(D);
dot(H);
dot(F);
dot(G);
dot(J);
dot(M);
dot(I);
dot(D_1);
dot(N);

/* Label points */
label("$O$", O, lsf * dir(45));
label("$A$", A, lsf * dir(45));
label("$E$", E, lsf * dir(45));
label("$D$", D, lsf * dir(225));
label("$H$", H, lsf * dir(90));
label("$F$", F, lsf * dir(225));
label("$G$", G, lsf * dir(-45));
label("$J$", J, lsf * dir(225));
label("$M$", M, lsf * dir(225));
label("$I$", I, lsf * dir(225));
label("$D_1$", D_1, lsf * dir(45));
label("$N$", N, lsf * dir(45));
[/asy]

Now to do the actual problem... let $D_1$ denote the intersection of $\overline{AD}$ and $\overline{EH}$, and $N$ the midpoint of $\overline{D_1H}$. It suffices to prove that $A$, $I$, $N$ are collinear as homothety will then do the rest. (Now we can erase $J$ and $M$ too!)

By Brokard's Theorem on $AHED$ we find that $\overline{D_1F}$ is perpendicular to $\overline{AE}$. Then angle chasing gives $FHD_1$ isosceles, whence $\overline{FN} \perp \overline{D_1H}$, and hence $N$ lies on $(FGHI)$, and moreover $\overline{FN}$ is parallel to $\overline{AH}$.

Finally, spiral similarity $\triangle FIH \sim \triangle GID$ gives $\angle GID = 90^{\circ}$. So \[
\angle AIG = \angle AID - 90^{\circ} = \angle EAD = \angle HAE = \angle NFE = \angle NIG 
\] implying $A$, $I$, $N$ are collinear.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rkm0959
1721 posts
#5 • 2 Y
Y by Eray, Adventure10
Let $A_1$ be the $A$-excenter.
$D$ is the midpoint of $B_1C_1$ and angle chasing gives us that $E$ is the circumcenter of $\triangle A_1B_1C_1$.

Now delete $B_1, C_1, B, C$. All we need is that $AE$ is the diameter of $\omega$, true since $\angle ADE = 90$.

Extend $FI$ to hit $\omega$ again at $N$. Note that $HN$ is a diameter of $\omega$ as $\angle HIF=\angle HIN=90$.
Since $DH$ is the polar of $F$, it follows that $(I, N, D, H)$ form a harmonic bundle.
Note that $\angle HAN = 90$, so $AN \parallel JD$. Now taking perspectivity at $A$, we know that $AI \cap DJ$ is the midpoint of $DJ$.
This post has been edited 3 times. Last edited by rkm0959, Mar 12, 2016, 9:05 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mela_20-15
125 posts
#6 • 3 Y
Y by amar_04, Adventure10, Mango247
I wasted 15 minutes drawing the whole configuration xd. My solution: get that
$GIMD $ is cyclic through simple angle chasing and then $MGD=JHD=180-AID =MID $ thus $A, I, M are colinear.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#7
Y by
[asy]
size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -25.800306410292965, xmax = 18.69755750735967, ymin = -26.36714817636629, ymax = 11.432112570887025;  /* image dimensions */ /* draw figures */draw(circle((1.51,-5.91), 10.121744656995443), linewidth(0.8)); draw(circle((-9.704152976988905,-9.594995367805822), 6.0734424300098295), linewidth(0.8)); draw((-14.298672709415895,-5.622956674768868)--(8.129633244561914,1.747034060842779), linewidth(0.8)); draw((-10.850919602737585,-0.7068894497390896)--(-5.1096332445619135,-13.56703406084278), linewidth(0.8)); draw((-10.850919602737585,-0.7068894497390896)--(-4.827298864876047,1.9822973840736995), linewidth(0.8)); draw((-14.298672709415895,-5.622956674768868)--(11.63007655692946,-6.093753593985436), linewidth(0.8)); draw((-4.827298864876047,1.9822973840736995)--(-5.1096332445619135,-13.56703406084278), linewidth(0.8)); draw((-8.61007655692946,-5.726246406014564)--(8.129633244561914,1.747034060842779), linewidth(0.8)); draw((-5.1096332445619135,-13.56703406084278)--(8.129633244561914,1.747034060842779), linewidth(0.8));  /* dots and labels */dot((1.51,-5.91),dotstyle); label("$O$", (0.9542336333852767,-5.394140630949368), NE * labelscalefactor); dot((-4.827298864876047,1.9822973840736995),dotstyle); label("$D$", (-6.661440209152047,2.261405849507), NE * labelscalefactor); dot((-8.61007655692946,-5.726246406014564),dotstyle); label("$A$", (-8.455708915509009,-5.31439535511128), NE * labelscalefactor); dot((11.63007655692946,-6.093753593985436),dotstyle); label("$E$", (11.799591147365131,-5.7131217343017155), NE * labelscalefactor); dot((-14.298672709415895,-5.622956674768868),linewidth(4pt) + dotstyle); label("$F$", (-15.39354791342259,-4.716305786325626), NE * labelscalefactor); dot((-5.1096332445619135,-13.56703406084278),dotstyle); label("$H$", (-6.58169493331396,-13.687649318110433), NE * labelscalefactor); dot((-4.96846605471898,-5.7923683383845415),linewidth(4pt) + dotstyle); label("$G$", (-4.308954571928476,-5.473885906787454), NE * labelscalefactor); dot((-8.361199418772483,-3.6718898739692025),linewidth(4pt) + dotstyle); label("$I$", (-7.777874070885267,-3.440381372916232), NE * labelscalefactor); dot((8.129633244561914,1.747034060842779),dotstyle); label("$H'$", (8.290799010489295,2.141787935749869), NE * labelscalefactor); dot((-10.850919602737585,-0.7068894497390896),linewidth(4pt) + dotstyle); label("$J$", (-10.688576638975448,-0.3701882531498763), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
Basically the excenter set-up is useless...
Firstly, let $A_1$ be the A-excenter. Notice that $\triangle ABC$ is the orthic triangle of $\triangle A_1B_1C_1$, hence $E$ is the circumcenter of $\triangle A_1B_1C_1$, since $D$ is the midpoint of $B_1C_1$, $ED\perp DA$. Let $H'$ be the refoection of $H$ with resepct to $O$, then $\angle FIH=\angle FGH=90^{\circ}=\angle H'IH$, hence $F,I,H'$ are collinear. Moreover, $AH'\|DJ$. Let $AI\cap JD=X$
Now since $FD,FH$ are tangent to $(DAE)$, $(H',I;D,H)=-1$. Projecting at $A$ we have $(J,D;X,\infty_{JD})=-1$, this completes the proof.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DNCT1
235 posts
#8
Y by
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(14cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -20.60931532349808, xmax = 57.94594262920248, ymin = -11.923382857502832, ymax = 31.52942715176661;  /* image dimensions */
pen ffqqff = rgb(1.,0.,1.); pen qqccqq = rgb(0.,0.8,0.); pen ffxfqq = rgb(1.,0.4980392156862745,0.); 
 /* draw figures */
draw((5.946964785775411,18.127449325978752)--(-4.753145523657345,-6.638460566542636), ffqqff); 
draw((-4.753145523657345,-6.638460566542636)--(39.123037581004304,-8.57338376786798), ffqqff); 
draw((39.123037581004304,-8.57338376786798)--(5.946964785775411,18.127449325978752), ffqqff); 
draw((-16.744108013774635,12.510848548587553)--(53.65676215412123,29.93680216510684)); 
draw((-16.744108013774635,12.510848548587553)--(25.086495536042218,-5.562061925351868)); 
draw((25.086495536042218,-5.562061925351868)--(53.65676215412123,29.93680216510684)); 
draw(circle((15.516730160908809,6.282693700313439), 15.227562023082754), red); 
draw((18.45632707017328,21.22382535684719)--(25.086495536042218,-5.562061925351868)); 
draw((0.6082211705700606,24.735355684321082)--(25.086495536042218,-5.562061925351868)); 
draw((0.2914768664954937,6.547848914836248)--(9.577219998049351,25.560389745724507)); 
draw((9.577219998049351,25.560389745724507)--(18.45632707017328,21.22382535684719)); 
draw((0.6082211705700606,24.735355684321082)--(18.45632707017328,21.22382535684719)); 
draw((18.45632707017328,21.22382535684719)--(0.2914768664954937,6.547848914836248)); 
draw(circle((0.44984901853277715,15.641602299578667), 9.095132344339751), qqccqq); 
draw((5.946964785775411,18.127449325978752)--(14.016773534111325,23.39210755128585)); 
draw((0.6082211705700606,24.735355684321082)--(0.2914768664954937,6.547848914836248)); 
draw((9.37390196833439,13.88583713584172)--(14.016773534111325,23.39210755128585)); 
draw((5.946964785775411,18.127449325978752)--(30.741983455322124,6.017538485790626)); 
draw((0.6082211705700606,24.735355684321082)--(30.741983455322124,6.017538485790626), ffxfqq); 
draw((0.2914768664954937,6.547848914836248)--(8.531639366171959,19.813663796951545)); 
draw((-16.744108013774635,12.510848548587553)--(-4.753145523657345,-6.638460566542636)); 
draw((39.123037581004304,-8.57338376786798)--(53.65676215412123,29.93680216510684)); 
 /* dots and labels */
dot((5.946964785775411,18.127449325978752),linewidth(3.pt) + dotstyle); 
label("$A$", (3.2819983648724627,18.539975049351547), NE * labelscalefactor); 
dot((-4.753145523657345,-6.638460566542636),linewidth(3.pt) + dotstyle); 
label("$B$", (-6.537408879215107,-9.526519671938146), NE * labelscalefactor); 
dot((39.123037581004304,-8.57338376786798),linewidth(3.pt) + dotstyle); 
label("$C$", (40.626673159315736,-10.91824668291119), NE * labelscalefactor); 
dot((-16.744108013774635,12.510848548587553),linewidth(3.pt) + dotstyle); 
label("$C_1$", (-19.14027014524876,13.823566845498457), NE * labelscalefactor); 
dot((53.65676215412123,29.93680216510684),linewidth(3.pt) + dotstyle); 
label("$B_1$", (55.626397610914076,27.6635187879526), NE * labelscalefactor); 
dot((18.45632707017328,21.22382535684719),linewidth(3.pt) + dotstyle); 
label("$D$", (19.286858991062438,22.947110584099512), NE * labelscalefactor); 
dot((25.086495536042218,-5.562061925351868),linewidth(3.pt) + dotstyle); 
label("$E$", (26.168175878651365,-6.743065649992062), NE * labelscalefactor); 
dot((0.6082211705700606,24.735355684321082),linewidth(3.pt) + dotstyle); 
label("$F$", (-1.7436825080857423,26.03983727515072), NE * labelscalefactor); 
dot((9.37390196833439,13.88583713584172),linewidth(3.pt) + dotstyle); 
label("$G$", (9.080860910593469,10.49888565261841), NE * labelscalefactor); 
dot((0.2914768664954937,6.547848914836248),linewidth(3.pt) + dotstyle); 
label("$H$", (-1.4344098389806221,7.483477128843485), NE * labelscalefactor); 
dot((9.577219998049351,25.560389745724507),linewidth(3.pt) + dotstyle); 
label("$J$", (7.998406568725547,26.96765528246608), NE * labelscalefactor); 
dot((8.531639366171959,19.813663796951545),linewidth(3.pt) + dotstyle); 
label("$I$", (8.616951906935787,21.09147456946879), NE * labelscalefactor); 
dot((14.016773534111325,23.39210755128585),linewidth(3.pt) + dotstyle); 
label("$P$", (14.338496285380513,23.874928591414875), NE * labelscalefactor); 
dot((30.741983455322124,6.017538485790626),linewidth(3.pt) + dotstyle); 
label("$K$", (31.03922041705701,6.478340954251843), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */[/asy]
$\textit{Proof}$
It's easy to see that $E$ lies on the perpendicular bisector of $\overline{B_1C_1}$
Since $90^o-\angle C_1AB=90^o-\angle B_1AC\implies \angle EC_1B_1=\angle EB_1C_1$
Well known $(ABC)$ passes the midpoint of $B_1C_1$ (the Euler circle of the triangle which has three vertices be the excenters of $\bigtriangleup ABC$)
This implies that $G$ is the midpoint of $HD$ here $\implies F=\overline {HH}\cap\overline{DD} (\star)$ of the circle $\omega$
Let $\overline{AI}\cap\overline{JD}=P$ and $K\in\omega$ such that $\overline{AK}\parallel\overline{JD}$
Since $(FGH)$ is the circle with diameter $FH$ so $\angle FIH=90^o (1)$
We have $\angle HIK=\angle HAK=\angle HJD=90^o (2)$
So by $(1),(2)\implies F,I,K\quad\text{collinear}$ and by $(\star)$ we have $HIDK$ is harmonic and since $\overline{AK}\parallel\overline{JD}$ so
$$-1=A(KI,DH)\overset{JD}{=}A(P\infty_{JD},JD)\implies P\quad\text{is the midpoint of}\quad\overline{JD}$$The end the proof. $\quad\blacksquare$
This post has been edited 1 time. Last edited by DNCT1, Jan 3, 2021, 2:19 PM
Z K Y
N Quick Reply
G
H
=
a