Y by Davi-8191, Adventure10, Mango247, Koko11
As shown in the figure below,
is a trapezoid,
. The sides
,
,
are tangent to
and
touches
at
. The sides
,
,
are tangent to
, and
touches
at
. Prove that the lines
,
,
meet at the same point.
![[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(10pt));
pair A=origin,B=(1,-7),C=(30,-15),D=(26,6);
pair bisA=bisectorpoint(B,A,D),bisB=bisectorpoint(A,B,C),bisC=bisectorpoint(B,C,D),bisD=bisectorpoint(C,D,A);
path bA=A--(bisA+100*(bisA-A)),bB=B--(bisB+100*(bisB-B)),bC=C--(bisC+100*(bisC-C)),bD=D--(bisD+100*(bisD-D));
pair O1=intersectionpoint(bA,bB),O2=intersectionpoint(bC,bD);
dot(O1^^O2,linewidth(2));
pair h1=foot(O1,A,B),h2=foot(O2,C,D);
real r1=abs(O1-h1),r2=abs(O2-h2);
draw(circle(O1,r1)^^circle(O2,r2));
draw(A--B--C--D--cycle);
draw(A--C^^B--D^^h1--h2);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,dir(350));
label("$D$",D,dir(350));
label("$P$",h1,dir(200));
label("$Q$",h2,dir(350));
label("$O_1$",O1,dir(150));
label("$O_2$",O2,dir(300));
[/asy]](//latex.artofproblemsolving.com/2/1/3/21358d59310e2109169924c2c5f7900ef449be9b.png)



















![[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(10pt));
pair A=origin,B=(1,-7),C=(30,-15),D=(26,6);
pair bisA=bisectorpoint(B,A,D),bisB=bisectorpoint(A,B,C),bisC=bisectorpoint(B,C,D),bisD=bisectorpoint(C,D,A);
path bA=A--(bisA+100*(bisA-A)),bB=B--(bisB+100*(bisB-B)),bC=C--(bisC+100*(bisC-C)),bD=D--(bisD+100*(bisD-D));
pair O1=intersectionpoint(bA,bB),O2=intersectionpoint(bC,bD);
dot(O1^^O2,linewidth(2));
pair h1=foot(O1,A,B),h2=foot(O2,C,D);
real r1=abs(O1-h1),r2=abs(O2-h2);
draw(circle(O1,r1)^^circle(O2,r2));
draw(A--B--C--D--cycle);
draw(A--C^^B--D^^h1--h2);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,dir(350));
label("$D$",D,dir(350));
label("$P$",h1,dir(200));
label("$Q$",h2,dir(350));
label("$O_1$",O1,dir(150));
label("$O_2$",O2,dir(300));
[/asy]](http://latex.artofproblemsolving.com/2/1/3/21358d59310e2109169924c2c5f7900ef449be9b.png)