Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Easy Geometry
pokmui9909   5
N a few seconds ago by Korean_fish_Kaohsiung
Source: FKMO 2025 P4
Triangle $ABC$ satisfies $\overline{CA} > \overline{AB}$. Let the incenter of triangle $ABC$ be $\omega$, which touches $BC, CA, AB$ at $D, E, F$, respectively. Let $M$ be the midpoint of $BC$. Let the circle centered at $M$ passing through $D$ intersect $DE, DF$ at $P(\neq D), Q(\neq D)$, respecively. Let line $AP$ meet $BC$ at $N$, line $BP$ meet $CA$ at $L$. Prove that the three lines $EQ, FP, NL$ are concurrent.
5 replies
pokmui9909
Mar 30, 2025
Korean_fish_Kaohsiung
a few seconds ago
Turbo's en route to visit each cell of the board
Lukaluce   5
N 3 minutes ago by EeEeRUT
Source: EGMO 2025 P5
Let $n > 1$ be an integer. In a configuration of an $n \times n$ board, each of the $n^2$ cells contains an arrow, either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the arrows in all of the cells rotate $90^{\circ}$ counterclockwise. We call a cell good if, starting from that cell, Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial cell at the end. Determine, in terms of $n$, the maximum number of good cells over all possible starting configurations.

Proposed by Melek Güngör, Turkey
5 replies
Lukaluce
3 hours ago
EeEeRUT
3 minutes ago
A magician has one hundred cards numbered 1 to 100
Valentin Vornicu   48
N 10 minutes ago by Sleepy_Head
Source: IMO 2000, Problem 4, IMO Shortlist 2000, C1
A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick works?
48 replies
+2 w
Valentin Vornicu
Oct 24, 2005
Sleepy_Head
10 minutes ago
Inspired by kjhgyuio
sqing   1
N 16 minutes ago by sqing
Source: Own
Let $ a,b,c\geq 0 $ and $ b^2 +  bc + c^2=49,c^2 + ca  + a^2=64. $ Prove that
$$  \frac{7+\sqrt{109}}{2}\leq a +b + c \leq 15 $$$$  \frac{7(\sqrt{109}-7)}{2}\leq ab+bc+ca \leq \frac{112}{\sqrt 3} $$$$ 113- \frac{112}{\sqrt 3}\leq a^2 +b^2 + c^2 \leq 113 $$
1 reply
2 viewing
sqing
28 minutes ago
sqing
16 minutes ago
one cyclic formed by two cyclic
CrazyInMath   24
N 21 minutes ago by SimplisticFormulas
Source: EGMO 2025/3
Let $ABC$ be an acute triangle. Points $B, D, E$, and $C$ lie on a line in this order and satisfy $BD = DE = EC$. Let $M$ and $N$ be the midpoints of $AD$ and $AE$, respectively. Suppose triangle $ADE$ is acute, and let $H$ be its orthocentre. Points $P$ and $Q$ lie on lines $BM$ and $CN$, respectively, such that $D, H, M,$ and $P$ are concyclic and pairwise different, and $E, H, N,$ and $Q$ are concyclic and pairwise different. Prove that $P, Q, N,$ and $M$ are concyclic.
24 replies
CrazyInMath
Yesterday at 12:38 PM
SimplisticFormulas
21 minutes ago
Find the minimum
sqing   5
N an hour ago by sqing
Source: China
Let $ABC$ be a triangle with $ BC=2AB$ and the rea is $2 . $ Find the minimum of $AC. $
5 replies
sqing
5 hours ago
sqing
an hour ago
Circumcenter lies on a circle
Lukaluce   2
N an hour ago by Primeniyazidayi
Source: 2024 Junior Macedonian Mathematical Olympiad P3
The angle bisector of $\angle BAC$ intersects the circumcircle of the acute-angled $\triangle ABC$ at point $D$. Let the perpendicular bisectors of $CD$ and $AD$ intersect sides $BC$ and $AB$ at points $E$ and $F$, respectively. If $O$ is the circumcenter of $\triangle ABC$, prove that the points $F, D, E$, and $O$ are concyclic.

Proposed by Petar Filipovski
2 replies
Lukaluce
2 hours ago
Primeniyazidayi
an hour ago
Parallelograms and concyclicity
Lukaluce   10
N an hour ago by ThatApollo777
Source: EGMO 2025 P4
Let $ABC$ be an acute triangle with incentre $I$ and $AB \neq AC$. Let lines $BI$ and $CI$ intersect the circumcircle of $ABC$ at $P \neq B$ and $Q \neq C$, respectively. Consider points $R$ and $S$ such that $AQRB$ and $ACSP$ are parallelograms (with $AQ \parallel RB, AB \parallel QR, AC \parallel SP$, and $AP \parallel CS$). Let $T$ be the point of intersection of lines $RB$ and $SC$. Prove that points $R, S, T$, and $I$ are concyclic.
10 replies
Lukaluce
3 hours ago
ThatApollo777
an hour ago
Looks hard (to me)
kjhgyuio   6
N 3 hours ago by kjhgyuio
_______________
6 replies
kjhgyuio
5 hours ago
kjhgyuio
3 hours ago
Concurrence of lines defined by intersections of circles
Lukaluce   0
3 hours ago
Source: 2025 Macedonian Balkan Math Olympiad TST Problem 2
Let $\triangle ABC$ be an acute-angled triangle and $A_1, B_1$, and $C_1$ be the feet of the altitudes from $A, B$, and $C$, respectively. On the rays $AA_1, BB_1$, and $CC_1$, we have points $A_2, B_2$, and $C_2$ respectively, lying outside of $\triangle ABC$, such that
\[\frac{A_1A_2}{AA_1} = \frac{B_1B_2}{BB_1} = \frac{C_1C_2}{CC_1}.\]If the intersections of $B_1C_2$ and $B_2C_1$, $C_1A_2$ and $C_2A_1$, and $A_1B_2$ and $A_2B_1$ are $A', B'$, and $C'$ respectively, prove that $AA', BB'$, and $CC'$ have a common point.
0 replies
Lukaluce
3 hours ago
0 replies
Isosceles Triangle Geo
oVlad   3
N 5 hours ago by Turkish_sniper
Source: Romania Junior TST 2025 Day 1 P2
Consider the isosceles triangle $ABC$ with $\angle A>90^\circ$ and the circle $\omega$ of radius $AC$ centered at $A.$ Let $M$ be the midpoint of $AC.$ The line $BM$ intersects $\omega$ a second time at $D.$ Let $E$ be a point on $\omega$ such that $BE\perp AC.$ Let $N$ be the intersection of $DE$ and $AC.$ Prove that $AN=2\cdot AB.$
3 replies
oVlad
Apr 12, 2025
Turkish_sniper
5 hours ago
Mock 22nd Thailand TMO P9
korncrazy   1
N 6 hours ago by ItzsleepyXD
Source: own
Let $H_A,H_B,H_C$ be the feet of the altitudes of the triangle $ABC$ from $A,B,C$, respectively. $P$ is the point on the circumcircle of the triangle $ABC$, $H$ is the orthocenter of the triangle $ABC$, and the incircle of triangle $H_AH_BH_C$ has radius $r$. Let $T_A$ be the point such that $T_A$ and $H$ are on the opposite side of $H_BH_C$, line $T_AP$ is perpendicular to the line $H_BH_C$, and the distance from $T_A$ to line $H_BH_C$ is $r$. Define $T_B$ and $T_C$ similarly. Prove that $T_A,T_B,T_C$ are collinear.
1 reply
korncrazy
Yesterday at 6:57 PM
ItzsleepyXD
6 hours ago
Projection of vertex onto bisectors
randomusername   8
N 6 hours ago by AshAuktober
Source: ITAMO 2016, Problem 1
Let $ABC$ be a triangle, and let $D$ and $E$ be the orthogonal projections of $A$ onto the internal bisectors from $B$ and $C$. Prove that $DE$ is parallel to $BC$.
8 replies
randomusername
May 11, 2016
AshAuktober
6 hours ago
Trigonometric Equation
VitaPretor   0
Today at 4:55 AM
\[
\text{Given that } 0 < \theta < 90^\circ,\ \text{solve the equation: } \sin(\theta - 60^\circ)\sin\theta + \sin(54^\circ - \theta)\sin 54^\circ = 0
\]\[
\text{What is the value of } \theta\ (\text{in degrees})\ \text{that satisfies the equation?}
\]
0 replies
VitaPretor
Today at 4:55 AM
0 replies
triangle ABC
Pirkuliyev Rovsen   1
N Aug 30, 2013 by Tsikaloudakis
Given a triangle $ABC$,let $K$ be the midpoint of $AB$ and $L$ a be point on $AC$ such that $AL=LC+CB$.Prove that ${\angle}KLB=90^\circ$ if and only if $AC=3CB$.
1 reply
Pirkuliyev Rovsen
Aug 30, 2013
Tsikaloudakis
Aug 30, 2013
triangle ABC
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pirkuliyev Rovsen
5047 posts
#1 • 2 Y
Y by Adventure10, Mango247
Given a triangle $ABC$,let $K$ be the midpoint of $AB$ and $L$ a be point on $AC$ such that $AL=LC+CB$.Prove that ${\angle}KLB=90^\circ$ if and only if $AC=3CB$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tsikaloudakis
978 posts
#2 • 3 Y
Y by Pirkuliyev Rovsen, Adventure10, Mango247
We consider the midpoint M of the AL. Εxtend the AC by department CE = BC and we have:
\[\begin{array}{l}
\left. \begin{array}{l}
K\hat LB = {90^o}\\
AK = KB\\
AL = LE
\end{array} \right\}\mathop {}\limits^{}  \Rightarrow \mathop {}\limits^{} L\hat BE = {90^o}\\
\\
\left. \begin{array}{l}
L\hat BE = {90^o}\\
BC = CE\\
AL = LE\\
AM = ML
\end{array} \right\}\mathop {}\limits^{}  \Rightarrow \mathop {}\limits^{} BC = CE = CL = LM = MA
\end{array}\]
Attachments:
Z K Y
N Quick Reply
G
H
=
a