Y by amatysten, narutomath96, BEHZOD_UZ, Tawan, Jalil_Huseynov, Adventure10, Mango247, and 3 other users
Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle.
![[asy]
pair A,B,C,D,E,F,G,H,I,J,K,L;
A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42);
G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64);
draw(A--D);draw(D--G);draw(G--J);draw(J--A);
draw(A--G);draw(D--J);
draw(B--I);draw(C--H);draw(E--L);draw(F--K);
pair R,S,T,U,V;
R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06);
label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N);
[/asy]](//latex.artofproblemsolving.com/4/6/4/46427c44da0a2576460300fa6c5f84472442b1e1.png)
Proposed by Nairi M. Sedrakyan, Armenia
![[asy]
pair A,B,C,D,E,F,G,H,I,J,K,L;
A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42);
G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64);
draw(A--D);draw(D--G);draw(G--J);draw(J--A);
draw(A--G);draw(D--J);
draw(B--I);draw(C--H);draw(E--L);draw(F--K);
pair R,S,T,U,V;
R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06);
label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N);
[/asy]](http://latex.artofproblemsolving.com/4/6/4/46427c44da0a2576460300fa6c5f84472442b1e1.png)
Proposed by Nairi M. Sedrakyan, Armenia