Y by phantranhuongth, Adventure10, Mango247, GeoKing
Let
be the diameter of semicircle
,
be points on the arc
,
be respectively the circumcenter of
and
.
Prove that:
.![[asy]
import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black;
real h=sqrt(55/64);
pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B);
D(arc(O,1,0,180),darkgreen);
D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue);
D(O);
[/asy]](//latex.artofproblemsolving.com/7/a/1/7a1abce71ca933e712f09b65e8a4643908e31e3a.png)







Prove that:

![[asy]
import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black;
real h=sqrt(55/64);
pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B);
D(arc(O,1,0,180),darkgreen);
D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue);
D(O);
[/asy]](http://latex.artofproblemsolving.com/7/a/1/7a1abce71ca933e712f09b65e8a4643908e31e3a.png)
This post has been edited 1 time. Last edited by sqing, Aug 19, 2014, 10:45 PM