Y by Adventure10, Mango247
Let ABC be a triangle. The external and internal angle bisectors of ∠CAB intersect side BC at D and E, respectively. Let F be a point on the segment BC. The circumcircle of triangle ADF intersects AB and AC at I and J, respectively. Let N be the mid-point of IJ and H the foot of E on DN. Prove that E is the incenter of triangle AHF, or the center of the excircle.
Proposed by Steve Dinh
Proposed by Steve Dinh