Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Advanced topics in Inequalities
va2010   18
N an hour ago by sqing
So a while ago, I compiled some tricks on inequalities. You are welcome to post solutions below!
18 replies
va2010
Mar 7, 2015
sqing
an hour ago
two subsets with no fewer than four common elements.
micliva   39
N 2 hours ago by de-Kirschbaum
Source: All-Russian Olympiad 1996, Grade 9, First Day, Problem 4
In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members.

A. Skopenkov
39 replies
micliva
Apr 18, 2013
de-Kirschbaum
2 hours ago
3 knightlike moves is enough
sarjinius   2
N 2 hours ago by cooljoseph
Source: Philippine Mathematical Olympiad 2025 P6
An ant is on the Cartesian plane. In a single move, the ant selects a positive integer $k$, then either travels [list]
[*] $k$ units vertically (up or down) and $2k$ units horizontally (left or right); or
[*] $k$ units horizontally (left or right) and $2k$ units vertically (up or down).
[/list]
Thus, for any $k$, the ant can choose to go to one of eight possible points.
Prove that, for any integers $a$ and $b$, the ant can travel from $(0, 0)$ to $(a, b)$ using at most $3$ moves.
2 replies
sarjinius
Mar 9, 2025
cooljoseph
2 hours ago
16th ibmo - uruguay 2001/q3.
carlosbr   21
N 2 hours ago by de-Kirschbaum
Source: Spanish Communities
Let $S$ be a set of $n$ elements and $S_1,\ S_2,\dots,\ S_k$ are subsets of $S$ ($k\geq2$), such that every one of them has at least $r$ elements.

Show that there exists $i$ and $j$, with $1\leq{i}<j\leq{k}$, such that the number of common elements of $S_i$ and $S_j$ is greater or equal to: $r-\frac{nk}{4(k-1)}$
21 replies
carlosbr
Apr 15, 2006
de-Kirschbaum
2 hours ago
Weird Geo
Anto0110   1
N 2 hours ago by cooljoseph
In a trapezium $ABCD$, the sides $AB$ and $CD$ are parallel and the angles $\angle ABC$ and $\angle BAD$ are acute. Show that it is possible to divide the triangle $ABC$ into 4 disjoint triangle $X_1. . . , X_4$ and the triangle $ABD$ into 4 disjoint triangles $Y_1,. . . , Y_4$ such that the triangles $X_i$ and $Y_i$ are congruent for all $i$.
1 reply
Anto0110
Yesterday at 9:24 PM
cooljoseph
2 hours ago
Hard FE R^+
DNCT1   5
N 3 hours ago by jasperE3
Find all functions $f:\mathbb{R^+}\to\mathbb{R^+}$ such that
$$f(3x+f(x)+y)=f(4x)+f(y)\quad\forall x,y\in\mathbb{R^+}$$
5 replies
DNCT1
Dec 30, 2020
jasperE3
3 hours ago
Maximum of Incenter-triangle
mpcnotnpc   4
N 3 hours ago by mpcnotnpc
Triangle $\Delta ABC$ has side lengths $a$, $b$, and $c$. Select a point $P$ inside $\Delta ABC$, and construct the incenters of $\Delta PAB$, $\Delta PBC$, and $\Delta PAC$ and denote them as $I_A$, $I_B$, $I_C$. What is the maximum area of the triangle $\Delta I_A I_B I_C$?
4 replies
mpcnotnpc
Mar 25, 2025
mpcnotnpc
3 hours ago
Something nice
KhuongTrang   26
N 4 hours ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
26 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
4 hours ago
Tiling rectangle with smaller rectangles.
MarkBcc168   59
N 4 hours ago by Bonime
Source: IMO Shortlist 2017 C1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.

Proposed by Jeck Lim, Singapore
59 replies
MarkBcc168
Jul 10, 2018
Bonime
4 hours ago
Existence of AP of interesting integers
DVDthe1st   34
N 5 hours ago by DeathIsAwe
Source: 2018 China TST Day 1 Q2
A number $n$ is interesting if 2018 divides $d(n)$ (the number of positive divisors of $n$). Determine all positive integers $k$ such that there exists an infinite arithmetic progression with common difference $k$ whose terms are all interesting.
34 replies
DVDthe1st
Jan 2, 2018
DeathIsAwe
5 hours ago
Beautiful problem
luutrongphuc   13
N Apr 10, 2025 by ItzsleepyXD
(Phan Quang Tri) Let triangle $ABC$ be circumscribed about circle $(I)$, and let $H$ be the orthocenter of $\triangle ABC$. The circle $(I)$ touches line $BC$ at $D$. The tangent to the circle $(BHC)$ at $H$ meets $BC$ at $S$. Let $J$ be the midpoint of $HI$, and let the line $DJ$ meet $(I)$ again at $X$. The tangent to $(I)$ parallel to $BC$ meets the line $AX$ at $T$. Prove that $ST$ is tangent to $(I)$.
13 replies
luutrongphuc
Apr 4, 2025
ItzsleepyXD
Apr 10, 2025
Beautiful problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
luutrongphuc
35 posts
#1 • 1 Y
Y by PikaPika999
(Phan Quang Tri) Let triangle $ABC$ be circumscribed about circle $(I)$, and let $H$ be the orthocenter of $\triangle ABC$. The circle $(I)$ touches line $BC$ at $D$. The tangent to the circle $(BHC)$ at $H$ meets $BC$ at $S$. Let $J$ be the midpoint of $HI$, and let the line $DJ$ meet $(I)$ again at $X$. The tangent to $(I)$ parallel to $BC$ meets the line $AX$ at $T$. Prove that $ST$ is tangent to $(I)$.
This post has been edited 1 time. Last edited by luutrongphuc, Apr 7, 2025, 1:49 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidenkim119
32 posts
#2 • 1 Y
Y by PikaPika999
bump0ppppppppp
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
97 posts
#3 • 2 Y
Y by aidenkim119, PikaPika999
BUMPPPPPP
Why it didn’t proposed for imo p3/6
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidenkim119
32 posts
#4 • 1 Y
Y by PikaPika999
whwlqkd wrote:
BUMPPPPPP
Why it didn’t proposed for imo p3/6

Solved but i dont know how to type this in latex sorry
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
97 posts
#5
Y by
\angle:
$\angle$
\triangle:
$\triangle$
\perp:
$\perp$
\times:
$\times$
\cap:
$\cap$
etc
(You can search the latex code more)
If you want to write $\LaTeX$, you have to write dollar sign before and after the code.
Some example of latex:
$1+1=2$
$2\times 5=10$
$3-(1-2)=4$
$\frac{3}{67}$
etc
Click the text, then you can see the latex code
This post has been edited 3 times. Last edited by whwlqkd, Apr 6, 2025, 12:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
97 posts
#9
Y by
You have to write $ on the end of the alphabet
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidenkim119
32 posts
#19 • 1 Y
Y by whwlqkd
Use six point line and polepolar to erase useless points

Then use pascal to change the question

Then easy calaulation finishes it
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hukilau17
283 posts
#26 • 1 Y
Y by PikaPika999
No one's actually going to post a solution? All right, here goes.

Complex bash with the incircle of $\triangle ABC$ as the unit circle, and let it touch $AC,AB$ at $E,F$ respectively, and let $\triangle ABC$ have circumcenter $O$, so
$$|d|=|e|=|f|=1$$$$a = \frac{2ef}{e+f}$$$$b = \frac{2df}{d+f}$$$$c = \frac{2de}{d+e}$$$$o = \frac{2def(d+e+f)}{(d+e)(d+f)(e+f)}$$$$h = a+b+c-2o = \frac{2(d^2e^2+d^2ef+d^2f^2+de^2f+def^2+e^2f^2)}{(d+e)(d+f)(e+f)}$$$$j = \frac{h}2 = \frac{d^2e^2+d^2ef+d^2f^2+de^2f+def^2+e^2f^2}{(d+e)(d+f)(e+f)}$$Now we find the coordinate of $S$. Since $S$ lies on line $BC$ we have
$$\overline{s} = \frac{2d-s}{d^2}$$Since line $SH$ is tangent to the circumcircle of $\triangle BHC$, we have
$$\frac{(b-c)(h-s)}{(b-h)(c-h)} \in \mathbb{R} \implies \frac{d(h-s)}{ef} \in i\mathbb{R}$$$$\frac{d\left[2(d^2e^2+d^2ef+d^2f^2+de^2f+def^2+e^2f^2) - s(d+e)(d+f)(e+f)\right]}{ef(d+e)(d+f)(e+f)} = -\frac{ef\left[2d^2(d^2+de+df+e^2+ef+f^2) - (2d-s)(d+e)(d+f)(e+f)\right]}{d^3(d+e)(d+f)(e+f)}$$$$2d^4(d^2e^2+d^2ef+d^2f^2+de^2f+def^2+e^2f^2) - d^4s(d+e)(d+f)(e+f) = -2d^2e^2f^2(d^2+de+df+e^2+ef+f^2) + 2de^2f^2(d+e)(d+f)(e+f) - e^2f^2s(d+e)(d+f)(e+f)$$$$s = \frac{2d^4(d^2e^2+d^2ef+d^2f^2+de^2f+def^2+e^2f^2) + 2d^2e^2f^2(d^2+de+df+e^2+ef+f^2) - 2de^2f^2(d+e)(d+f)(e+f)}{d^4(d+e)(d+f)(e+f) - e^2f^2(d+e)(d+f)(e+f)}$$We simplify this to get
$$s = \frac{2d(d^5e^2+d^5ef+d^5f^2+d^4e^2f+d^4ef^2+2d^3e^2f^2-de^3f^3-e^4f^3-e^3f^4)}{(d+e)(d+f)(e+f)(d^2+ef)(d^2-ef)}$$Next we find the coordinate of $X$. We have
$$d - j = \frac{d^3e+d^3f+d^2ef-e^2f^2}{(d+e)(d+f)(e+f)}$$and so
$$x = \frac{d-j}{d\overline{\jmath}-1} = -\frac{d-j}{d(\overline{d}-\overline{\jmath})} = -\frac{d^3e+d^3f+d^2ef-e^2f^2}{e^2f+ef^2+def-d^3}$$Now we solve the rest of this problem in reverse. We know $T$ doesn't lie on line $BC$, so if the line $ST$ is tangent to the unit circle, it must be the other tangent to the unit circle passing through $S$ (besides line $BC$). So letting the other tangent through $S$ touch the unit circle at $U$, we have
$$s = \frac{2du}{d+u}$$and so
$$u = \frac{ds}{2d-s}$$Now
$$2d - s = \frac{2d\left[(d^4-e^2f^2)(d+e)(d+f)(e+f) - (d^5e^2+d^5ef+d^5f^2+d^4e^2f+d^4ef^2+2d^3e^2f^2-de^3f^3-e^4f^3-e^3f^4)\right]}{(d+e)(d+f)(e+f)(d^2+ef)(d^2-ef)}$$which we simplify to
$$2d - s = -\frac{2d(-d^6e-d^6f-d^5ef+2d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^3f^3+de^2f^4)}{(d+e)(d+f)(e+f)(d^2+ef)(d^2-ef)}$$So
$$u = -\frac{d^5e^2+d^5ef+d^5f^2+d^4e^2f+d^4ef^2+2d^3e^2f^2-de^3f^3-e^4f^3-e^3f^4}{-d^5e-d^5f-d^4ef+2d^2e^2f^2+de^3f^2+de^2f^3+e^4f^2+e^3f^3+e^2f^4}$$Then let the tangent to the unit circle at $U$ meet the tangent line to the unit circle parallel to $BC$ at $V$. We want to show that $V$ lies on line $AX$ -- then it will follow that $V=T$ and that $ST$ is tangent to the unit circle at $U$. Now
$$v = \frac{2(-d)u}{-d+u} = -\frac{2d(d^5e^2+d^5ef+d^5f^2+d^4e^2f+d^4ef^2+2d^3e^2f^2-de^3f^3-e^4f^3-e^3f^4)}{-d^6e-d^6f+d^5e^2+d^5f^2+d^4e^2f+d^4ef^2+4d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^2f^4-e^4f^3-e^3f^4}$$Then we find the vectors
$$a-x = \frac{2ef(e^2f+ef^2+def-d^3) + (e+f)(d^3e+d^3f+d^2ef-e^2f^2)}{(e+f)(e^2f+ef^2+def-d^3)} = \frac{d^3e^2+d^3f^2+d^2e^2f+d^2ef^2+2de^2f^2+e^3f^2+e^2f^3}{(e+f)(e^2f+ef^2+def-d^3)}$$and
\begin{align*}
a-v &= \frac{2ef(-d^6e-d^6f+d^5e^2+d^5f^2+d^4e^2f+d^4ef^2+4d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^2f^4-e^4f^3-e^3f^4) + 2d(e+f)(d^5e^2+d^5ef+d^5f^2+d^4e^2f+d^4ef^2+2d^3e^2f^2-de^3f^3-e^4f^3-e^3f^4)}{(e+f)(-d^6e-d^6f+d^5e^2+d^5f^2+d^4e^2f+d^4ef^2+4d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^2f^4-e^4f^3-e^3f^4)} \\
&= \frac{2(d^6e^3+d^6e^2f+d^6ef^2+d^6f^3+2d^5e^3f+2d^5e^2f^2+2d^5ef^3+3d^4e^3f^2+3d^4e^2f^3+4d^3e^3f^3-2de^4f^4-e^5f^4-e^4f^5)}{(e+f)(-d^6e-d^6f+d^5e^2+d^5f^2+d^4e^2f+d^4ef^2+4d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^2f^4-e^4f^3-e^3f^4)}
\end{align*}Now there's only one way that the numerator of $a-v$ could conceivably factor so that $\frac{a-x}{a-v}$ is real, and so we conveniently discover the factorization
$$a-v = \frac{2(d^3e+d^3f+d^2ef-e^2f^2)(d^3e^2+d^3f^2+d^2e^2f+d^2ef^2+2de^2f^2+e^3f^2+e^2f^3)}{(e+f)(-d^6e-d^6f+d^5e^2+d^5f^2+d^4e^2f+d^4ef^2+4d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^2f^4-e^4f^3-e^3f^4)}$$Then
$$\frac{a-x}{a-v} = \frac{-d^6e-d^6f+d^5e^2+d^5f^2+d^4e^2f+d^4ef^2+4d^3e^2f^2+d^2e^3f^2+d^2e^2f^3+de^4f^2+de^2f^4-e^4f^3-e^3f^4}{2(d^3e+d^3f+d^2ef-e^2f^2)(e^2f+ef^2+def-d^3)}$$This is equal to its conjugate and thus real. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidenkim119
32 posts
#28
Y by
Any synthetic proof?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WLOGQED1729
44 posts
#29 • 1 Y
Y by Bluecloud123
Fantastic Problem! Here’s my synthetic proof.
First WLOG, we can assume that $AB<AC$
Part 1 Simplify the problem
Let $(I)$ tangent to $AB,AC$ at $F,E$, respectively.
Let $L \neq D$ be a point on $(I)$ s.t. $SL$ is tangent to $(I)$ and define $D’$ as the antipode of $D$ wrt. $(I)$
Let $T’$ be the intersection between $SL$ and the tangent line of $(I)$ at $D’$
If we can prove that $A,T’,X$ are collinear, we can conclude that $T’=T$ and we’re done.
Next, by pole-polar duality we know that poles are collinear if and only if its polars are concurrent.
Thus, we can just prove that $D’L$, $EF$ and the tangent of $(I)$ at $X$ are concurrent.
This is equivalent to show that there exists an involution on $(I)$ which swaps $(D’,L),(E,F)$ and $(X,X)$.

Part 2 Breakdown the problems into different parts
Since $D$ lies on $(I)$, an involution swapping $(D', L), (E, F), (X, X)$ on $(I)$
is equivalent to an involution on the pencil from $D$ swapping $(DD', DL), (DE, DF), (DX, DX)$.
Let $DL, DX, DD'$ intersect $EF$ at $L', X', K$, respectively.
Projecting this pencil onto line $EF$, we seek an involution on $EF$ that swaps $(K, L'), (E, F), (X', X')$.
Let $AK, AX, AL'$ intersect $BC$ at $M, Y, T$, respectively.
Projecting through $A$ onto line $BC$, this reduces to showing that there exists an involution on $BC$ that swaps $(M, T), (C, B), (Y, Y)$.
We claim that $HY$ bisects $\angle BHC$ and $TH,MH$ are isogonal conjugate wrt. $\angle BHC$ and will prove in the next section. If this is true, we get the desired involution.

Part 3 Solving sub problem 1
We’re going to prove that $TH,MH$ are isogonal conjugate wrt. $\angle BHC$
Recall the well known lemma which is used in 2005 G6, $AK$ bisects $BC$. We deduce that $M$ is the midpoint of $BC$.
Thus, our goal is to show that $HT$ is H-symmedian of $\triangle BHC$ which is equivalent to showing that $(S,T;B,C)=-1$.
Let $SL$ intersects $AB,AC$ at $P,Q$. Consider tangential quadrilateral $PQCB$, it is well known that $PC,QB,LD,EF$ are concurrent. So, $P,L’,C$ are collinear and $Q,L’,B$ are collinear.
By well known harmonic configuration, we conclude that $(S,T;B,C)=-1$, as desired.

Part 4 Solving sub problem 2
We’re going to prove that $HY$ bisects $\angle BHC$
Let the line through $H$ parallel to $EF$ intersects $BC$ at $R$.
First, we’ll show that our goal is equivalent to showing that $DJ \perp RI$
Suppose we’ve already shown that $DJ \perp RI$, we conclude that polar of point $R$ wrt. $(I)$ is $DJ$
We then apply the same trick as Part 3. Let $RX$ intersects $AB,AC$ at $R_1,R_2$, respectively.
Consider the tangential quadrilateral $R_1R_2CB$ and recall the well known harmonic configuration, we can conclude that $(R,Y;B,C)=-1$.
By trivial angle chasing, we know that $HR$ externally bisects $\angle BHC$. Thus, $HY$ internally bisects $\angle BHC$, we’re done.

Now, we focus on our goal proving that $DJ \perp RI$.
This is equivalent to $\angle IDJ =\angle IRD$. Let $H’,I’$ be the reflections of $H,I$ wrt. $BC$, respectively.
Observe that $\angle IDJ = \angle II’H = \angle HH’I = \angle AH’I$. So, our new goal is to show that $\angle IRD =\angle AH’I$
It is well known that $H’$ lies on $(ABC)$ and $A’=AI \cap (ABC)$ is the circumcenter of $\triangle BIC$.
Note that $A’$ is midpoint of arc $BC$ not containing $A$ and $H’$ lies on $(ABC)$, we can easily show that $A’H$ externally bisects $\angle BH’C$.
Since we already have that $RH$ externally bisects $\angle BHC$, we deduce that $RH’$ externally bisects $\angle BH’C$. Thus, $R,H’,A’$ are collinear.
Finally, consider an inversion $\phi$ wrt. $(BIC)$ centered at $A’$.
Let $AI$ intersects $BC$ at $Z$. We know that $\phi$ swaps $H’\leftrightarrow R$ and $Z \leftrightarrow A$.
Note that $$\angle IRD = \angle IRA’ - \angle H’RZ =\angle H’IA’ - \angle H’AZ = \angle H’IA’ - \angle H’AI = \angle AH’I $$Thus, we’re done. $\blacksquare$
Attachments:
This post has been edited 1 time. Last edited by WLOGQED1729, Apr 8, 2025, 6:55 AM
Reason: Edit image
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidenkim119
32 posts
#30
Y by
That is very interestuung!!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pingupignu
49 posts
#31
Y by
Nice problem! Here's another solution using DDIT and trigonometry. Firstly we can delete $S$ and $T$ as follows:
Let $Z = BC \cap AX$ and $S' \in BC$ such that $S'T$ is the other tangent from $T$ to $(I)$. From Dual of Desargues Involution theorem we have the following reciprocal pairs on the pencil through $T$:
$$(T \infty_{BC}, TS'), (TB, TC), (TA, TD)$$Projecting it to $BC$ gives
$$(S', \infty_{BC}), (B, C), (Z, D)$$are reciprocal pairs of some involution on $BC$, so that $S'B \cdot S'C = S'Z \cdot S' D$. We need to show $S'H$ is tangent to $(BHC)$ $\iff$ $(BHC), (ZHD)$ are tangent $\iff$ $\frac{BZ}{ZC} \cdot \frac{BD}{BC} = (\frac{BH}{CH})^2$ $\iff$ $\frac{c}{b} \cdot \frac{\sin \angle BAX}{\sin \angle XAC} \cdot \frac{s-b}{s-c} = (\frac{\cos B}{\cos C})^2$.

From the solution from #29, if we let $Q = DX \cap EF$, then $AQ$ passes through the foot of internal angle bisector of $\angle BHC$ onto $BC$. Hence we deduce (letting $Y$ be said foot)
$$\frac{BY}{YC} = \frac{BH}{HC} \implies \frac{c}{b} \cdot \frac{\sin \angle BAQ}{\sin \angle QAC} = \frac{\cos B}{\cos C}$$
We can see that $$\frac{\sin \angle FAX}{\sin \angle EAX} = (\frac{FX}{EX})^2 = (\frac{FQ}{QE})^2 \cdot (\frac{ED}{DF})^2 = (\frac{\sin \angle BAQ}{\sin \angle QAC})^2 \cdot (\frac{\cos \frac{C}{2}}{\cos \frac{B}{2}})^2 = (\frac{b \cos B \cos \frac{C}{2}}{c \cos C \cos \frac{B}{2}})^2$$
And
$$\frac{c}{b} \cdot \frac{\sin \angle BAX}{\sin \angle XAC} \cdot \frac{s-b}{s-c} = \frac{c}{b} \cdot (\frac{b \cos B \cos \frac{C}{2}}{c \cos C \cos \frac{B}{2}})^2 \cdot \frac{BI}{CI} \cdot \frac{\sin \angle BID}{\sin \angle DIC}$$$$= (\frac{\cos B}{\cos C})^2 \cdot \frac{b}{c} \cdot \frac{\sin \frac{C}{2}}{\sin \frac{B}{2}} \cdot \frac{\cos \frac{B}{2}}{\cos \frac{C}{2}} \cdot (\frac{\cos \frac{C}{2}}{\cos \frac{B}{2}})^2 = \frac{b}{c} \cdot \frac{\sin C}{\sin B} \cdot (\frac{\cos B}{\cos C})^2 = (\frac{\cos B}{\cos C})^2,$$as desired. $\blacksquare$
Attachments:
This post has been edited 1 time. Last edited by pingupignu, Apr 9, 2025, 3:34 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
luutrongphuc
35 posts
#33
Y by
Thank you everyone for your contribution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ItzsleepyXD
106 posts
#34
Y by
Maybe non DDIT solution but a lot of projective spam.
Define point - Redefine point

Lemma

Claim 1

Claim 2

Claim 3

Claim 4

Finished
Attachments:
This post has been edited 2 times. Last edited by ItzsleepyXD, Apr 10, 2025, 6:27 AM
Reason: image
Z K Y
N Quick Reply
G
H
=
a