Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Apple sharing in Iran
mojyla222   3
N an hour ago by math-helli
Source: Iran 2025 second round p6
Ali is hosting a large party. Together with his $n-1$ friends, $n$ people are seated around a circular table in a fixed order. Ali places $n$ apples for serving directly in front of himself and wants to distribute them among everyone. Since Ali and his friends dislike eating alone and won't start unless everyone receives an apple at the same time, in each step, each person who has at least one apple passes one apple to the first person to their right who doesn't have an apple (in the clockwise direction).

Find all values of $n$ such that after some number of steps, the situation reaches a point where each person has exactly one apple.
3 replies
mojyla222
Apr 20, 2025
math-helli
an hour ago
Iran second round 2025-q1
mohsen   5
N an hour ago by math-helli
Find all positive integers n>2 such that sum of n and any of its prime divisors is a perfect square.
5 replies
mohsen
Apr 19, 2025
math-helli
an hour ago
Iran Team Selection Test 2016
MRF2017   9
N an hour ago by SimplisticFormulas
Source: TST3,day1,P2
Let $ABC$ be an arbitrary triangle and $O$ is the circumcenter of $\triangle {ABC}$.Points $X,Y$ lie on $AB,AC$,respectively such that the reflection of $BC$ WRT $XY$ is tangent to circumcircle of $\triangle {AXY}$.Prove that the circumcircle of triangle $AXY$ is tangent to circumcircle of triangle $BOC$.
9 replies
MRF2017
Jul 15, 2016
SimplisticFormulas
an hour ago
Some nice summations
amitwa.exe   30
N an hour ago by P162008
Problem 1: $\Omega=\left(\sum_{0\le i\le j\le k}^{\infty} \frac{1}{3^i\cdot4^j\cdot5^k}\right)\left(\mathop{{\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\sum_{k=0}^{\infty}}}_{i\neq j\neq k}\frac{1}{3^i\cdot3^j\cdot3^k}\right)=?$
30 replies
amitwa.exe
May 24, 2024
P162008
an hour ago
Combo problem
soryn   3
N 2 hours ago by soryn
The school A has m1 boys and m2 girls, and ,the school B has n1 boys and n2 girls. Each school is represented by one team formed by p students,boys and girls. If f(k) is the number of cases for which,the twice schools has,togheter k girls, fund f(k) and the valute of k, for which f(k) is maximum.
3 replies
soryn
Yesterday at 6:33 AM
soryn
2 hours ago
Looking for the smallest ghost
Justpassingby   5
N 3 hours ago by venhancefan777
Source: 2021 Mexico Center Zone Regional Olympiad, problem 1
Let $p$ be an odd prime number. Let $S=a_1,a_2,\dots$ be the sequence defined as follows: $a_1=1,a_2=2,\dots,a_{p-1}=p-1$, and for $n\ge p$, $a_n$ is the smallest integer greater than $a_{n-1}$ such that in $a_1,a_2,\dots,a_n$ there are no arithmetic progressions of length $p$. We say that a positive integer is a ghost if it doesn’t appear in $S$.
What is the smallest ghost that is not a multiple of $p$?

Proposed by Guerrero
5 replies
Justpassingby
Jan 17, 2022
venhancefan777
3 hours ago
non-symmetric ineq (for girls)
easternlatincup   36
N 3 hours ago by Tony_stark0094
Source: Chinese Girl's MO 2007
For $ a,b,c\geq 0$ with $ a+b+c=1$, prove that

$ \sqrt{a+\frac{(b-c)^2}{4}}+\sqrt{b}+\sqrt{c}\leq \sqrt{3}$
36 replies
1 viewing
easternlatincup
Dec 30, 2007
Tony_stark0094
3 hours ago
Turbo's en route to visit each cell of the board
Lukaluce   20
N 3 hours ago by Mathgloggers
Source: EGMO 2025 P5
Let $n > 1$ be an integer. In a configuration of an $n \times n$ board, each of the $n^2$ cells contains an arrow, either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the arrows in all of the cells rotate $90^{\circ}$ counterclockwise. We call a cell good if, starting from that cell, Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial cell at the end. Determine, in terms of $n$, the maximum number of good cells over all possible starting configurations.

Proposed by Melek Güngör, Turkey
20 replies
Lukaluce
Apr 14, 2025
Mathgloggers
3 hours ago
Divisibility on 101 integers
BR1F1SZ   3
N 3 hours ago by ClassyPeach
Source: Argentina Cono Sur TST 2024 P2
There are $101$ positive integers $a_1, a_2, \ldots, a_{101}$ such that for every index $i$, with $1 \leqslant i \leqslant 101$, $a_i+1$ is a multiple of $a_{i+1}$. Determine the greatest possible value of the largest of the $101$ numbers.
3 replies
BR1F1SZ
Aug 9, 2024
ClassyPeach
3 hours ago
BMO 2021 problem 3
VicKmath7   19
N 3 hours ago by NuMBeRaToRiC
Source: Balkan MO 2021 P3
Let $a, b$ and $c$ be positive integers satisfying the equation $(a, b) + [a, b]=2021^c$. If $|a-b|$ is a prime number, prove that the number $(a+b)^2+4$ is composite.

Proposed by Serbia
19 replies
VicKmath7
Sep 8, 2021
NuMBeRaToRiC
3 hours ago
V \le RS/2 in tetrahderon with equil base
Miquel-point   1
N Apr 8, 2025 by kiyoras_2001
Source: Romanian IMO TST 1981, Day 4 P2
Consider a tetrahedron $OABC$ with $ABC$ equilateral. Let $S$ be the area of the triangle of sides $OA$, $OB$ and $OC$. Show that $V\leqslant \dfrac12 RS$ where $R$ is the circumradius and $V$ is the volume of the tetrahedron.

Stere Ianuș
1 reply
Miquel-point
Apr 6, 2025
kiyoras_2001
Apr 8, 2025
V \le RS/2 in tetrahderon with equil base
G H J
G H BBookmark kLocked kLocked NReply
Source: Romanian IMO TST 1981, Day 4 P2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Miquel-point
472 posts
#1 • 2 Y
Y by PikaPika999, kiyoras_2001
Consider a tetrahedron $OABC$ with $ABC$ equilateral. Let $S$ be the area of the triangle of sides $OA$, $OB$ and $OC$. Show that $V\leqslant \dfrac12 RS$ where $R$ is the circumradius and $V$ is the volume of the tetrahedron.

Stere Ianuș
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kiyoras_2001
674 posts
#2
Y by
See Bulgaria 1990 P6.
Z K Y
N Quick Reply
G
H
=
a