Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Vertices of a convex polygon if and only if m(S) = f(n)
orl   12
N 27 minutes ago by Maximilian113
Source: IMO Shortlist 2000, C3
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
12 replies
orl
Aug 10, 2008
Maximilian113
27 minutes ago
Inequalities
Scientist10   2
N an hour ago by arqady
If $x, y, z \in \mathbb{R}$, then prove that the following inequality holds:
\[
\sum_{\text{cyc}} \sqrt{1 + \left(x\sqrt{1 + y^2} + y\sqrt{1 + x^2}\right)^2} \geq \sum_{\text{cyc}} xy + 2\sum_{\text{cyc}} x
\]
2 replies
Scientist10
Yesterday at 6:36 PM
arqady
an hour ago
$n$ with $2000$ divisors divides $2^n+1$ (IMO 2000)
Valentin Vornicu   65
N an hour ago by ray66
Source: IMO 2000, Problem 5, IMO Shortlist 2000, Problem N3
Does there exist a positive integer $ n$ such that $ n$ has exactly 2000 prime divisors and $ n$ divides $ 2^n + 1$?
65 replies
Valentin Vornicu
Oct 24, 2005
ray66
an hour ago
Find the smallest of sum of elements
hlminh   0
an hour ago
Let $S=\{1,2,...,2014\}$ and $X=\{a_1,a_2,...,a_{30}\}$ is a subset of $S$ such that if $a,b\in X,a+b\leq 2014$ then $a+b\in X.$ Find the smallest of $\dfrac{a_1+a_2+\cdots+a_{30}}{30}.$
0 replies
hlminh
an hour ago
0 replies
Easy IMO 2023 NT
799786   133
N an hour ago by Maximilian113
Source: IMO 2023 P1
Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.
133 replies
799786
Jul 8, 2023
Maximilian113
an hour ago
Complicated FE
XAN4   2
N an hour ago by cazanova19921
Source: own
Find all solutions for the functional equation $f(xyz)+\sum_{cyc}f(\frac{yz}x)=f(x)\cdot f(y)\cdot f(z)$, in which $f$: $\mathbb R^+\rightarrow\mathbb R^+$
Note: the solution is actually quite obvious - $f(x)=x^n+\frac1{x^n}$, but the proof is important.
Note 2: it is likely that the result can be generalized into a more advanced questions, potentially involving more bash.
2 replies
XAN4
Yesterday at 11:53 AM
cazanova19921
an hour ago
Cute diophantine
TestX01   0
2 hours ago
Find all sequences of four consecutive integers such that twice their product is perfect square minus nine.
0 replies
TestX01
2 hours ago
0 replies
\frac{1}{9}+\frac{1}{\sqrt{3}}\geq a^2+\sqrt{a+ b^2} \geq \frac{1}{4}
sqing   1
N 2 hours ago by sqing
Source: Own
Let $a,b\geq  0 $ and $3a+4b =1 .$ Prove that
$$\frac{2}{3}\geq a +\sqrt{a^2+ 4b^2}\geq  \frac{6}{13}$$$$\frac{1}{9}+\frac{1}{\sqrt{3}}\geq a^2+\sqrt{a+ b^2} \geq  \frac{1}{4}$$$$2\geq a+\sqrt{a^2+16b} \geq  \frac{2}{3}\geq  a+\sqrt{a^2+16b^3} \geq  \frac{2(725-8\sqrt{259})}{729}$$
1 reply
sqing
Oct 3, 2023
sqing
2 hours ago
Stronger inequality than an old result
KhuongTrang   22
N 2 hours ago by KhuongTrang
Source: own, inspired
Problem. Find the best constant $k$ satisfying $$(ab+bc+ca)\left[\frac{1}{(a+b)^{2}}+\frac{1}{(b+c)^{2}}+\frac{1}{(c+a)^{2}}\right]\ge \frac{9}{4}+k\cdot\frac{a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)}{(a+b+c)^{3}}$$holds for all $a,b,c\ge 0: ab+bc+ca>0.$
22 replies
KhuongTrang
Aug 1, 2024
KhuongTrang
2 hours ago
Something nice
KhuongTrang   26
N 2 hours ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
26 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
2 hours ago
IMO 2012/5 Mockup
v_Enhance   27
N 3 hours ago by Ilikeminecraft
Source: USA December TST for IMO 2013, Problem 3
Let $ABC$ be a scalene triangle with $\angle BCA = 90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK = BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL = AC$. The circumcircle of triangle $DKL$ intersects segment $AB$ at a second point $T$ (other than $D$). Prove that $\angle ACT = \angle BCT$.
27 replies
v_Enhance
Jul 30, 2013
Ilikeminecraft
3 hours ago
Right tetrahedron of fixed volume and min perimeter
Miquel-point   0
Apr 6, 2025
Source: Romanian IMO TST 1981, Day 4 P3
Determine the lengths of the edges of a right tetrahedron of volume $a^3$ so that the sum of its edges' lengths is minumum.

0 replies
Miquel-point
Apr 6, 2025
0 replies
Right tetrahedron of fixed volume and min perimeter
G H J
Source: Romanian IMO TST 1981, Day 4 P3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Miquel-point
472 posts
#1 • 1 Y
Y by PikaPika999
Determine the lengths of the edges of a right tetrahedron of volume $a^3$ so that the sum of its edges' lengths is minumum.
Z K Y
N Quick Reply
G
H
=
a