Join our free webinar April 22 to learn about competitive programming!

G
Topic
First Poster
Last Poster
Concurrency with 10 lines
oVlad   1
N 40 minutes ago by kokcio
Source: Romania EGMO TST 2017 Day 1 P1
Consider five points on a circle. For every three of them, we draw the perpendicular from the centroid of the triangle they determine to the line through the remaining two points. Prove that the ten lines thus formed are concurrent.
1 reply
oVlad
4 hours ago
kokcio
40 minutes ago
MathILy 2025 Decisions Thread
mysterynotfound   6
N 2 hours ago by BossLu99
Discuss your decisions here!
also share any relevant details about your decisions if you want
6 replies
+1 w
mysterynotfound
Today at 3:35 AM
BossLu99
2 hours ago
2025 USA IMO
john0512   81
N 2 hours ago by BossLu99
Congratulations to all of you!!!!!!!

Alexander Wang
Hannah Fox
Karn Chutinan
Andrew Lin
Calvin Wang
Tiger Zhang

Good luck in Australia!
81 replies
john0512
Apr 19, 2025
BossLu99
2 hours ago
k VOLUNTEERING OPPORTUNITY OPEN TO HIGH/MIDDLE SCHOOLERS
im_space_cadet   1
N 2 hours ago by elasticwealth
Hi everyone!
Do you specialize in contest math? Do you have a passion for teaching? Do you want to help leverage those college apps? Well, I have something for all of you.

I am im_space_cadet, and during the fall of last year, I opened my non-profit DeltaMathPrep which teaches students preparing for contest math the problem-solving skills they need in order to succeed at these competitions. Currently, we are very much understaffed and would greatly appreciate the help of more tutors on our platform.

Each week on Saturday and Wednesday, we meet once for each competition: Wednesday for AMC 8 and Saturday for AMC 10 and we go over a past year paper for the entire class. On both of these days, we meet at 9PM EST in the night.

This is a great opportunity for anyone who is looking to have a solid activity to add to their college resumes that requires low effort from tutors and is very flexible with regards to time.

This is the link to our non-profit for anyone who would like to view our initiative:
https://www.deltamathprep.org/

If you are interested in this opportunity, please send me a DM on AoPS or respond to this post expressing your interest. I look forward to having you all on the team!

Thanks,
im_space_cadet
1 reply
im_space_cadet
3 hours ago
elasticwealth
2 hours ago
2025 PROMYS Results
Danielzh   28
N 3 hours ago by ConfidentKoala4
Discuss your results here!
28 replies
Danielzh
Apr 18, 2025
ConfidentKoala4
3 hours ago
LMT Spring 2025 and Girls' LMT 2025
vrondoS   30
N 3 hours ago by Mintylemon66
The Lexington High School Math Team is proud to announce LMT Spring 2025 and our inaugural Girls’ LMT 2025! LMT is a competition for middle school students interested in math. Students can participate individually, or on teams of 4-6 members. This announcement contains information for BOTH competitions.

LMT Spring 2025 will take place from 8:30 AM-5:00 PM on Saturday, May 3rd at Lexington High School, 251 Waltham St., Lexington, MA 02421.

The competition will include two individual rounds, a Team Round, and a Guts Round, with a break for lunch and mini-events. A detailed schedule is available at https://lhsmath.org/LMT/Schedule.

There is a $15 fee per participant, paid on the day of the competition. Pizza will be provided for lunch, at no additional cost.

Register for LMT at https://lhsmath.org/LMT/Registration/Home.

Girls’ LMT 2025 will be held ONLINE on MathDash from 11:00 AM-4:15 PM EST on Saturday, April 19th, 2025. Participation is open to middle school students who identify as female or non-binary. The competition will include an individual round and a team round with a break for lunch and mini-events. It is free to participate.

Register for GLMT at https://www.lhsmath.org/LMT/Girls_LMT.

More information is available on our website: https://lhsmath.org/LMT/Home. Email lmt.lhsmath@gmail.com with any questions.
30 replies
vrondoS
Mar 27, 2025
Mintylemon66
3 hours ago
What's the easiest proof-based math competition?
Muu9   1
N 4 hours ago by EaZ_Shadow
In terms of the difficulty of the questions, not the level of competition. There's USAJMO, but surely there must be countries with less developed competitive math scenes whose Olympiads are easier.
1 reply
Muu9
4 hours ago
EaZ_Shadow
4 hours ago
Discuss the Stanford Math Tournament Here
Aaronjudgeisgoat   284
N 5 hours ago by KevinChen_Yay
I believe discussion is allowed after yesterday at midnight, correct?
If so, I will put tentative answers on this thread.
By the way, does anyone know the answer to Geometry Problem 5? I was wondering if I got that one right
Also, if you put answers, please put it in a hide tag

Answers for the Algebra Subject Test
Estimated Algebra Cutoffs
Answers for the Geometry Subject Test
Estimated Geo Cutoffs
Answers for the Discrete Subject Test
Estimated Cutoffs for Discrete
Answers for the Team Round
Guts Answers
284 replies
Aaronjudgeisgoat
Apr 14, 2025
KevinChen_Yay
5 hours ago
2021 AMC 12A #25
franzliszt   27
N Today at 6:53 AM by Magnetoninja
Source: 2021 AMC 12A #25
Let $d(n)$ denote the number of positive integers that divide $n$, including $1$ and $n$. For example, $d(1)=1,d(2)=2,$ and $d(12)=6$. (This function is known as the divisor function.) Let \[f(n)=\frac{d(n)}{\sqrt[3]{n}}.\]There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$. What is the sum of the digits of $N?$

$\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$
27 replies
1 viewing
franzliszt
Feb 5, 2021
Magnetoninja
Today at 6:53 AM
How many people get waitlisted st promys?
dragoon   24
N Today at 4:33 AM by freshestcheese
Asking for a friend here
24 replies
dragoon
Apr 18, 2025
freshestcheese
Today at 4:33 AM
Deciding between Ross and HCSSiM
akliu   27
N Today at 3:01 AM by scinderella220
Hey! I got accepted into Ross Indiana, and I think I'll probably also get accepted into HCSSiM. I've been looking between the two camps, and I'm trying to decide which one to go to -- both seem like really fun options.

Instead of trying to explain my personal preferences and thought processes, I thought it might be a good idea to ask the community for their personal opinions on these camps. What are some things that you like or dislike about both camps? (Whether it be through personal experience or by word-of-mouth, but please specify if it's just something you've heard)

This will probably help me be more informed on making a final decision, so I'd appreciate any advice. Thanks in advance!
27 replies
akliu
Apr 18, 2025
scinderella220
Today at 3:01 AM
Equality with Fermat Point
nsato   13
N Apr 6, 2025 by Nari_Tom
Source: 2012 Baltic Way, Problem 11
Let $ABC$ be a triangle with $\angle A = 60^\circ$. The point $T$ lies inside the triangle in such a way that $\angle ATB = \angle BTC = \angle CTA = 120^\circ$. Let $M$ be the midpoint of $BC$. Prove that $TA + TB + TC = 2AM$.
13 replies
nsato
Nov 22, 2012
Nari_Tom
Apr 6, 2025
Equality with Fermat Point
G H J
G H BBookmark kLocked kLocked NReply
Source: 2012 Baltic Way, Problem 11
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nsato
15653 posts
#1 • 4 Y
Y by soheil74, dmusurmonov, Adventure10, Mango247
Let $ABC$ be a triangle with $\angle A = 60^\circ$. The point $T$ lies inside the triangle in such a way that $\angle ATB = \angle BTC = \angle CTA = 120^\circ$. Let $M$ be the midpoint of $BC$. Prove that $TA + TB + TC = 2AM$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nguyenhuyhoang
207 posts
#2 • 2 Y
Y by Adventure10, Mango247
Construct equilateral triangle $BCU$ outside triangle $ABC$, $AU$ intersects $(O)$ at $I$, we easily have $A,T,U$ are collinear and $B,C,U,T$ are concyclic, this leads to $TB+TC=TU \Rightarrow TA+TB+TC=AU$.
Construct parallelogram $ABNC$, now we only have to prove that $AU=AN$. Notice that $UB, UC$ are tangents of $(O)$ at $B,C$, so we have $ABIC$ is a harmonic quadrilateral and $AI$ is the symmedian of triangle $ABC$. We have $\widehat{BAI}=\widehat{CAM}$ and after several angle calculations, we have $\widehat{AUN}=\widehat{ANU}$, hence proved
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4384 posts
#3 • 2 Y
Y by Adventure10, Mango247
As before, construct the parallelogram $ABNC$; additionally, construct the equilateral triangle $\Delta ABP$, $C$ and $P$ on different sides of $AB$.
We see that a $60^\circ$ rotation about $B$ will map $A$ to $P$ and $U$ to $C$, hence $AU=PC$ (Torricelli problem).
On the other side we see that $\Delta PAC\equiv\Delta NCA$ (s.a.s.), and $AN=PC$, hence $AU=PC=AN$, done.

Best regards,
sunken rock
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vslmat
154 posts
#4 • 3 Y
Y by soheil74, Adventure10, Mango247
Another proof:

Let $O$ be the circumcenter of $ABC$. Is is obvious that $T$ must lie on the circumcircle of $BOC, AT$ meets this circle again at $S$. Then $\Delta BSC$ is equilateral. If we choose a point $F$ on $AS$ so that $BF = BT$ then $\Delta BTF$ is also equilateral. But then it is easy to see that $\Delta BTC\cong\Delta BFS$, hence $TC = FS$. Thus $TA + TB + TC = AS$ and to complete the proof it remains to show that $AS = 2.AM$
Notice that $SB, SC$ are in fact tangents to the circumcircle of $ABC$ and $AS$ is the A-symmedian, then $\angle BAS = \angle MAC$. By sinus law in $AMC$: $AM/sinC = MC/sinMAC$ and in triangle $ABS$: $AS/sinC = BS/sinBAS = 2. MC/sin MAC$. Indeed, $AS = 2.AM$ q.e.d.

Note; In general, the relationship between A-symmedian $AS$ and median $AM$ is $AM = AS. cosA$
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vlwk
12 posts
#5 • 2 Y
Y by Adventure10, Mango247
Let $AB=c$, $BC=a$, $AC=b$, $AM=d$. By Stewart's Theorem we have \[AM^2=(2d)^2=2b^2+2c^2-a^2=2b^2+2c^2-(b^2+c^2-2bc\cos 60^{\circ})=b^2+c^2+bc.\]Hence it suffices to show $b^2+c^2+bc=(TA+TB+TC)^2$. Now Cosine Rule on $\triangle{ATB}$, $\triangle{BTC}$, $\triangle{CTA}$ yields
\begin{align}
c^2&=TA^2+TB^2-2TA \cdot TB\cos 120^{\circ} \nonumber \\
&=TA^2+TB^2+TA \cdot TB \\
b^2&=TA^2+TC^2+TA \cdot TC \\
b^2+c^2-bc&=b^2+c^2-2bc\cos 60^{\circ} \nonumber \\
&=a^2 \nonumber \\
&=TB^2+TC^2+TB \cdot TC
\end{align}Now $(1)+(2)-(3)$ gives $bc=2TA^2+TA \cdot TB + TA \cdot TC - TB \cdot TC$. Denote this as $(4)$, then $(1)+(2)+(4)$ gives $b^2+c^2+bc=4TA^2+TB^2+TC^2+2TA\cdot TB+2TA\cdot TC-TB\cdot TC$. It suffices to show this is equivalent to $(TA+TB+TC)^2=TA^2+TB^2+TC^2+2TA\cdot TB+2TA\cdot TC+2TB\cdot TC \iff TA^2=TB\cdot TC$.

To prove this, extend $AT$ to $D$ such that $AT=TD$ and extend $BT$ to $E$ such that $TE=TC$. Then $\angle{CTA}=\angle{ATB}=\angle{DTE} \implies \triangle{DTE} \equiv \triangle{ATC}$. Therefore $\angle{ADE}=\angle{TDE}=\angle{TAC}=60^{\circ}-\angle{BAP}=\angle{ABP}=\angle{ABE} \implies ABDE$ is cyclic, so by Power of a Point $AP \cdot PD=BP \cdot PE \iff PA^2=PB\cdot PC$, as desired. Hence done.
This post has been edited 3 times. Last edited by vlwk, Jul 28, 2016, 10:15 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KRIS17
134 posts
#6 • 1 Y
Y by Adventure10
The problem becomes trivial once you observe that $T$ is the circumcenter of $triangle\ ABC$ implying that $ABC$ is an equilateral triangle!

How come no one observed this? Am I missing something?
This post has been edited 1 time. Last edited by KRIS17, Aug 28, 2019, 2:32 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pluto1708
1107 posts
#7 • 1 Y
Y by Adventure10
KRIS17 wrote:
The problem becomes trivial once you observe that $T$ is the circumcenter of $triangle\ ABC$ implying that $ABC$ is an equilateral triangle!

How come no one observed this? Am I missing something?

Clearly $T$ is not the circumcenter of $ABC$ so $ABC$ is not equilateral
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KRIS17
134 posts
#8 • 1 Y
Y by Adventure10
Pluto1708 wrote:
KRIS17 wrote:
The problem becomes trivial once you observe that $T$ is the circumcenter of $triangle\ ABC$ implying that $ABC$ is an equilateral triangle!

How come no one observed this? Am I missing something?

Clearly $T$ is not the circumcenter of $ABC$ so $ABC$ is not equilateral

It is given that $\angle BTC = 2 * \angle BAC$ (120 = 2*60)
So why can't we use Central angle theorem?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LKira
252 posts
#9 • 2 Y
Y by Adventure10, Mango247
KRIS17 wrote:
Pluto1708 wrote:
KRIS17 wrote:
The problem becomes trivial once you observe that $T$ is the circumcenter of $triangle\ ABC$ implying that $ABC$ is an equilateral triangle!

How come no one observed this? Am I missing something?

Clearly $T$ is not the circumcenter of $ABC$ so $ABC$ is not equilateral

It is given that $\angle BTC = 2 * \angle BAC$ (120 = 2*60)
So why can't we use Central angle theorem?
$T$ lies on circumcircle of $BOC,$ not circumcenter
Look at the figure at post 4
This post has been edited 1 time. Last edited by LKira, Aug 28, 2019, 4:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KRIS17
134 posts
#10 • 2 Y
Y by Adventure10, Mango247
LKira wrote:
KRIS17 wrote:
Pluto1708 wrote:
Clearly $T$ is not the circumcenter of $ABC$ so $ABC$ is not equilateral

It is given that $\angle BTC = 2 * \angle BAC$ (120 = 2*60)
So why can't we use Central angle theorem?
$T$ lies on circumcircle of $BOC,$ not circumcenter
Look at the figure at post 4
True, but my point is that $O$ and $T$ happen to be one and the same as per the given inputs in the problem using central angle theorem on Point $T$ and vertex $A$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LKira
252 posts
#11 • 1 Y
Y by Adventure10
It is given that $\angle BTC = 2 * \angle BAC$ (120 = 2*60)
So why can't we use Central angle theorem?[/quote]
$T$ lies on circumcircle of $BOC,$ not circumcenter
Look at the figure at post 4[/quote]
True, but my point is that $O$ and $T$ happen to be one and the same as per the given inputs in the problem using central angle theorem on Point $T$ and vertex $A$.[/quote]

Did you look at the figure at post 4 ?
O and T coincide is just one small case, not the whole problem
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KRIS17
134 posts
#12 • 1 Y
Y by Adventure10
Even though most people have given the solution in the general case, I still believe that the problem indirectly asks about the special case where $T$ coincides with circumcenter (due to the inputs given in the problem).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rafaello
1079 posts
#13
Y by
Let $X$ be the point on $AT$ such that $XBC$ is equilateral triangle. Let $A'$ be the reflection of $A$ over $M$.

By Ptolemy, $TX=TB+TC$. Hence, we need $AX=AA'$. Reflect diagram over $BC$, note that $X$ goes to $N$, the midpoint of arc $BAC$ and $A'O$ goes to $AK$, where $K$ is the midpoint of arc $BC$ as $\angle BAC=60^\circ$. Thus, $A'X\parallel AN\perp AK$. Also $K$ lies on the perpendicular bisector of $A'X$ as it is center of $(BTC)$. We conclude that $AX=AA'$.

[asy]import olympiad;
size(9cm);defaultpen(fontsize(10pt));pen org=magenta;pen med=mediummagenta;pen light=pink;pen deep=deepmagenta;pen dark=darkmagenta;pen heavy=heavymagenta;

pair A,B,C,M,a,I,x,X,T,N,K,O; 
A=dir(120);B=dir(210);C=dir(330);M=midpoint(B--C);a=2M-A;path w=circumcircle(a,B,C);I=incenter(A,B,C);x=foot(a,A,I);X=2x-a;T=intersectionpoints(A--X,w)[0];N=2M-X;K=extension(X,N,A,I);O=(0,0);

draw(A--B--C--cycle,deep);draw(w,deep);draw(A--X,med);draw(A--a,med);draw(B--X--C,deep);draw(B--T,med);draw(C--T,med);draw(circumcircle(A,B,C),deep);draw(A--N,deep);

dot("$A$",A,dir(A)); 
dot("$B$",B,dir(B)); 
dot("$C$",C,dir(C)); 
dot("$M$",M,dir(M));
dot("$A'$",a,dir(a));
dot("$X$",X,dir(X));
dot("$T$",T,dir(T));
dot("$N$",N,dir(N));dot("$K$",K,dir(K));dot("$O$",O,N);
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nari_Tom
114 posts
#14
Y by
I will provide nice lemma which technically solves the problem.

Lemma: Let $X$ be the point in circumcircle of equilateral triangle $ABC$. Let's assume $X$ lies on minor arc $BC$, Then we have $AX=BX+CX$.

Let's construct equilateral triangles $AZB$ and $AYC$ outside of the $ABC$. Let $X=ZB \cap YC$. Let $T'=ZC \cap BY$. It's easy to conclude that $T'=T$. Since $AZXC$ is a isosceles trapezoid, we have that $AT=ZC$. But $ZC=ZT+TC=TB+TA+TC$, by our lemma and we are done.
Z K Y
N Quick Reply
G
H
=
a