Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
\frac{1}{9}+\frac{1}{\sqrt{3}}\geq a^2+\sqrt{a+ b^2} \geq \frac{1}{4}
sqing   1
N 3 minutes ago by sqing
Source: Own
Let $a,b\geq  0 $ and $3a+4b =1 .$ Prove that
$$\frac{2}{3}\geq a +\sqrt{a^2+ 4b^2}\geq  \frac{6}{13}$$$$\frac{1}{9}+\frac{1}{\sqrt{3}}\geq a^2+\sqrt{a+ b^2} \geq  \frac{1}{4}$$$$2\geq a+\sqrt{a^2+16b} \geq  \frac{2}{3}\geq  a+\sqrt{a^2+16b^3} \geq  \frac{2(725-8\sqrt{259})}{729}$$
1 reply
1 viewing
sqing
Oct 3, 2023
sqing
3 minutes ago
Stronger inequality than an old result
KhuongTrang   22
N 26 minutes ago by KhuongTrang
Source: own, inspired
Problem. Find the best constant $k$ satisfying $$(ab+bc+ca)\left[\frac{1}{(a+b)^{2}}+\frac{1}{(b+c)^{2}}+\frac{1}{(c+a)^{2}}\right]\ge \frac{9}{4}+k\cdot\frac{a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)}{(a+b+c)^{3}}$$holds for all $a,b,c\ge 0: ab+bc+ca>0.$
22 replies
KhuongTrang
Aug 1, 2024
KhuongTrang
26 minutes ago
Something nice
KhuongTrang   26
N 27 minutes ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
26 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
27 minutes ago
IMO 2012/5 Mockup
v_Enhance   27
N 35 minutes ago by Ilikeminecraft
Source: USA December TST for IMO 2013, Problem 3
Let $ABC$ be a scalene triangle with $\angle BCA = 90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK = BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL = AC$. The circumcircle of triangle $DKL$ intersects segment $AB$ at a second point $T$ (other than $D$). Prove that $\angle ACT = \angle BCT$.
27 replies
v_Enhance
Jul 30, 2013
Ilikeminecraft
35 minutes ago
No more topics!
perpendicularity involving ex and incenter
Erken   19
N Apr 6, 2025 by Primeniyazidayi
Source: Kazakhstan NO 2008 problem 2
Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.
19 replies
Erken
Dec 24, 2008
Primeniyazidayi
Apr 6, 2025
perpendicularity involving ex and incenter
G H J
Source: Kazakhstan NO 2008 problem 2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Erken
1363 posts
#1 • 2 Y
Y by Adventure10, PikaPika999
Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pohoatza
1145 posts
#2 • 6 Y
Y by jam10307, Titusir, Adventure10, Mango247, Cavas, PikaPika999
Let $ I_{a}$ ,$ I_{c}$ be the $ A$, $ C$-excenters, respectively. It is clear that $ B$, $ B_{1}$ and $ B_{2}$ are collinear; therefore, the perpendicularity of $ B_{2}I$ and $ B_{1}I_{b}$ is equivalent with the fact that $ I$ is the orthocenter of triangle $ I_{b}B_{1}B_{2}$. Thus, it is suffice to show that $ IB \cdot BI_{b} = BB_{1} \cdot BB_{2}$ (the power of $ I$ wrt. the circumcircle of $ I_{b}B_{1}B_{2}$). But, on the other hand, we know that $ I$ is the orthocenter of $ I_{a}I_{b}I_{c}$ and so $ IB \cdot BI_{b} = BI_{a} \cdot BI_{c}$. In this case, the problem reduces to proving that $ BB_{1} \cdot BB_{2} = BI_{a} \cdot BI_{c}$. But this is just a consequence of $ (B_{2}, I_{a}, B, I_{c}) = - 1$ and $ B_{1}I_{a} = B_{1}I_{c}$ (since the circumcircle of $ ABC$ is the nine-point center of $ I_{a}I_{b}I_{c}$).
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
yetti
2643 posts
#3 • 10 Y
Y by futurestar, Bee-sal, NZQR, myh2910, starchan, CT17, Adventure10, Mango247, dxd29070501, PikaPika999
$ BI$ cuts the circumcircle $ (O)$ of $ \triangle ABC$ again at $ Y$ and $ (Y)$ is a circle with center $ Y$ and radius $ YA = YC = YI = YI_b.$ $ B_2I_b$ cuts $ (Y)$ again at $ Q.$ $ \overline{B_2Q} \cdot \overline{B_2I_b} = \overline{B_2A} \cdot \overline{B_2C} = \overline{B_2B} \cdot \overline{B_2B_1}$ $ \Longrightarrow$ $ BB_1I_bQ$ is cyclic and the angle $ \angle B_1QI_b = \angle B_1BI_b$ is right. Since $ II_b$ is a diameter of $ (Y),$ $ Q \in (Y)$ and $ B_1Q \perp I_bQ,$ $ B_1Q$ goes through $ I$ $ \Longrightarrow$ $ I$ is orthocenter of $ \triangle B_1B_2I_b.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_13
48 posts
#4 • 2 Y
Y by Adventure10, PikaPika999
We use from vectors ($I_bB_1.B_2I=0$)
This post has been edited 1 time. Last edited by math_13, May 7, 2013, 12:12 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BBAI
563 posts
#5 • 5 Y
Y by earthrise, futurestar, leru007, Adventure10, PikaPika999
We notice that if we prove $B_1I$ is perpendicular to $B_2I_b$ ,we are done.
Let $ \odot AIC \cap B_2I_b=L$.As $\odot AIC$ and $\odot ABC$ have $AC$ as the radical axis and as $B_1B_2,AC,B_2I_b $ are concurrent, then $B_1BLI_b$ is cyclic. So $ B_1L$ is $\perp$ to $B_2I_b$.So $ I$ sholud lie on $B_1L$ as $II_b$ is the diameter of $ \odot AIC$. Hence done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4384 posts
#6 • 3 Y
Y by Adventure10, Mango247, PikaPika999
Let $\{I, X\}\in B_2I\cap\odot (AIC)$; from power of $B_2$ w.r.t. $\odot(ABC),\odot(AIC)$ we get (already proven $B_1-B-B_2$ are collinear): $B_2B\cdot B_2B_1=B_2A\cdot B_2C=B_2I\cdot B_2X$, hence $BB_1XI$ is cyclic, i.e. $B_2X\cap B_1X$. As $II_b$ is a diameter of $\odot (AIC)$, we infer $I_bX\bot IX$, meaning $B_1-X-I_b$ are collinear, and we are done.

Best regards,
sunken rock
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
highvalley
16 posts
#7 • 3 Y
Y by Adventure10, Mango247, PikaPika999
$ B_{1} $ is the midpoint of the arc $AC$ containing $B$, in the circumcircle of $\triangle ABC\cdot \cdot \cdot (1)$
$I_{b}$ is the $B$-excircle's center$\cdot \cdot \cdot (2) $
Angle bisector of $\angle ABC$ intersects $AC$ at $B_{2}\cdot \cdot \cdot (3)$
$ I  $ is the incenter of $\triangle ABC\cdot \cdot \cdot (4)$

By $(3)$ and $(4)$, $\angle IBB_{2}=\angle R\cdot \cdot \cdot (5)$
By $(1)$ and $(4)$,
\[\angle B_{1}BI\\=\angle IBC+\angle B_{1}BC
\\=\angle IBC+\angle B_{1}AC
\\=\angle IBC+(\angle R-\frac{1}{2}\angle AB_{1}C)
\\=\angle R+(\angle IBC-\frac{1}{2}\angle ABC)
\\=\angle R\cdot \cdot \cdot (6)\]
By $ (5) $ and $ (6) $, $  B $ and $B_{1},B_{2}$ are collinear$\cdot \cdot \cdot (7)$
By,$ (2) $ and $ (4) $, $\angle IAI_{b}=\angle ICI_{b}=\angle R\cdot \cdot \cdot (8)$
Let $ H $ be a point such that $ H $ is in $ B_{1}I $ and $ BH\bot HI_{b}. \cdot \cdot \cdot (9) $
By $ (6) $ and $(9)$, $B$ and $B_{1},I_{b},H$ are concyclic.$\cdot \cdot \cdot (10)$
By $ (8) $ and $(9)$, $A$ and $I,C,I_{b},H$ are concyclic.$\cdot \cdot \cdot (11)$
By $ (1) $ , $ A $ and $B,C,B_{1}$ are concyclic.$\cdot \cdot \cdot (12)$
By $ (10) $ and $(11),(12)$, $ I_{b} $ and $ H,BB_{1}\cap AC(=B_{2}) $ are collinear.$\cdot \cdot \cdot (13)$($\because$ $BB_{1}\cap AC\cap I_{b}H$ is a radical ceneter)
By $(9)$ and $(13) $, $B_{1}I\bot I_{b}B_{2}.\cdot \cdot \cdot (14)$
By $ (5) $ and $ (7) $, $ B_{1}B_{2}\bot BI_{b}.\cdot \cdot \cdot (15) $
By $ (14) $ and $ (15) $, I is orthocenter of $\triangle B_{1}B_{2}I_{b}$.
So $ B_{2}I\bot B_{1}I_{b} $.
$ (Q,E,D,) $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
yimingz89
222 posts
#8 • 3 Y
Y by Adventure10, Mango247, PikaPika999
Let $l$ be the line through $I$ perpendicular to $B_1I_B$. Define $P'=B_1I_B\cap l$. An easy angle chase shows $B_2,B,B_1$ are collinear on the external angle bisector of $B$ while $B_2,A,C$ are collinear by the definition. Now consider the circles $\Gamma_1=(ABC),\Gamma_2=(BB_1I),\Gamma_3=(AIC)$. Clearly $B_1\in\Gamma_1$ while $P'\in\Gamma_2$ since $\angle B_1P'I=\angle B_1BI=90^{\circ}$ and $P'\in\Gamma_3$ since $II_B$ is a diameter, where $I_B$ is the $B$-excenter, and $\angle IP'I_B=90^{\circ}$. It is easy to see that the Radical Axes of $\Gamma_1,\Gamma_2$ is $BB_1$, $\Gamma_2,\Gamma_3$ is $IP$, and $\Gamma_3,\Gamma_1$ is $AC$. By Radical Concurrence on $\Gamma_1,\Gamma_2,\Gamma_3$, these lines concur at $B_2$, which is enough to conclude that $B_2,I,P'$ are collinear, showing $P=P'$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pluto1708
1107 posts
#9 • 3 Y
Y by Adventure10, Mango247, PikaPika999
Power of point!
This post has been edited 1 time. Last edited by Pluto1708, Sep 16, 2018, 7:25 AM
Reason: Sy
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WolfusA
1900 posts
#10 • 3 Y
Y by NZQR, Adventure10, PikaPika999
Complex numbers: vertices of triangle are $a^2,b^2,c^2$, and it's circumcircle is a unit circle. Then incenter is $-ab-bc-ca$, $B_2$ as intersection of lines $BB_1,AC$ has coordinates $\frac{(b^2+ac)ac-(a^2+c^2)b^2}{ac-b^2}$.
$\frac{B_2-I}{I_b-B_1}=\frac{(ab+bc+ca)(ac-b^2)+(b^2ac+a^2c^2-a^2b^2-b^2c^2)}{(ab+bc-2ac)(ac-b^2)}$
The conjugate of this number is $\frac{(a+b+c)(b^2-ac)+abc+b^3-bc^2-a^2b}{(c+a-2b)(b^2-ac)}$
Adding two last complex numbers we get $0$ (as you don't believe check here Click to reveal hidden text)
Hence $B_2I\perp IbB_1$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AlastorMoody
2125 posts
#11 • 5 Y
Y by karitoshi, myh2910, Adventure10, Mango247, PikaPika999
Let $I_A,I_C$ be the $A$, $C-$ excenter, By Brokard's Theorem on Quadrilateral $I_CACI_A$ $\implies$ $I$ is the orthocenter of $\Delta B_2B_1I_B$
This post has been edited 1 time. Last edited by AlastorMoody, Feb 15, 2019, 8:07 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jupiter_is_BIG
867 posts
#12 • 2 Y
Y by Adventure10, PikaPika999
Erken wrote:
Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.

Was this question bonus or $I_b$ and $I_B$ the same?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kagebaka
3001 posts
#13 • 2 Y
Y by Adventure10, PikaPika999
It's well-known that under $\sqrt{ac}$ inversion, $\{I,I_B\},\{B_1,B_2\}$ swap, so we're done because then we must have$$BI\cdot BI_B = AB\cdot BC = BB_1\cdot BB_2,$$which means that $I$ is the orthocenter of $\triangle B_1B_2I_B.$ $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Dr_Vex
562 posts
#14 • 1 Y
Y by PikaPika999
We will prove that infact $I$ is the orthocenter of $\Delta B_{1}B_{2}I_{B}$.
Now let $B_{1}I\cap I_{B}B_{2}=F$. By PoP
$B_{2}F\cdot B_{2}I_{B} =B_{2}A\cdot B_{2}C=B_{2}B\cdot B_{2}B_{1}$. Hence
quadrilateral $B_{1}BI_{B}F$ is cyclic.
Now let $IE\perp B_{1}I_{B}$, it is also seen that there exists a circle $(I_{B}CEIAF)$. Hence, as $\angle B_{1}FI_{B}=\angle B_{1}BI_{B}=90^{\circ} \Rightarrow BIEB_{1}$ is cyclic too. As $BB_{1}\cap FI_{B}=B_{2}$ Its consequence leads to the fact that $B-I-E$
$\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SenatorPauline
30 posts
#15 • 2 Y
Y by AlastorMoody, PikaPika999
Jupiter_is_BIG wrote:
Was this question bonus or $I_b$ and $I_B$ the same?
It was a bonus
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
th1nq3r
146 posts
#16 • 1 Y
Y by PikaPika999
Notice that $\angle I_BBB_1 = 90$. (Indeed $\angle I_BBB_1 = \angle MBA + \angle B_1BA = \angle MB_1A + \angle B_1AC = 90$).

Denote by $P$ the intersection of line $B_2I_B$ with the circumcircle of $\triangle IAC$. It is immediate that \[B_2B \cdot B_2B_1 = B_2C \cdot B_2A = B_2P \cdot B_2I_B.\]Thus $B, B_1, P, I_B$ are concyclic. Now by the incenter/excenter lemma, we have that $II_B$ is the diameter of $(CAI_B)$. Using this, one obtains \[\angle I_BPI = 90 = \angle I_BBB_1 = \angle I_BPB_1.\]Therefore $P, I, B_1$ are collinear, and $I$ is the orthocenter of $B_2BI_B$, as desired. $\blacksquare$
This post has been edited 2 times. Last edited by th1nq3r, May 5, 2023, 1:35 PM
Reason: poor
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ricegang67
26 posts
#17 • 1 Y
Y by PikaPika999
We prove that $I$ is the orthocenter of $\triangle I_BB_1B_2$. In particular, it is equivalent to show that \[BI\cdot BI_B = BB_1\cdot BB_2.\]Let $D$ and $M$ be the intersections of line $BI$ with $AC$ and $(ABC)$. Since $(BD;II_B) = -1$, $BI\cdot BI_B = BD\cdot BM$. Then, observe that $MB\perp B_1B_2$ and $B_2D\perp B_1M$, so in fact $D$ is the orthocenter of $\triangle MB_1B_2$. Hence, \[BB_1\cdot BB_2 = BD\cdot BM = BI\cdot BI_B\]as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
598 posts
#18 • 1 Y
Y by PikaPika999
Well, it is known that the external angle bisector of $\triangle ABC$ is simply $\overline{BB_1}$. Now, notice that,
\[\measuredangle IAI_b=\measuredangle ICI_b=90^\circ\]and thus, $I$,$A$,$C$ and $I_b$ are concyclic. Now, let $B_3=(IBB_1)\cap \overline{B_1I_b}$. It is easy to see that since $\measuredangle IB_3B_1=\measuredangle IBB_1 90^\circ$, $B_3$ also lies on $(IAC)$. Now, let $B_3'=\overline{B_2I} \cap (IBB_1)$. Then,
\[B_2I\cdot B_2B_3' = B_2B \cdot B_2B_1 = B_2A\cdot B_2C\]Thus, $B_3'$ must also lie on $(IAC)$ which implies that $B_3'=B_3$ and indeed, $B_2I \perp B_1I_b$ as required.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aaravdodhia
2593 posts
#19 • 1 Y
Y by PikaPika999
[asy]
import olympiad; size(400);
draw(unitcircle);
pair B = dir(130), A = dir(200), C = dir(-20), M = midpoint(A--C), O = origin, B1 = intersectionpoint(O--(O+3*(O-M)),unitcircle);
pair I = incenter(A,B,C), L = intersectionpoint(B--(I+3*(I-B)),unitcircle), Ib = L + L-I;
pair exB = rotate(90,B) * I, B2 = extension(exB, B, A, C);
dot("$A$",A); dot("$B$",B); dot("$C$",C); dot("$I$",I); dot("$O$",O); dot("$M$",M); dot("$L$",L); dot("$I_B$",Ib); dot("$B_1$",B1); dot("$B_2$",B2);
draw(C--B2--B--C^^A--B--Ib^^Ib--B1--L^^B2--extension(B2,I,B1,Ib));
draw(B--B1);
// draw(incircle(A,B,C);
[/asy]

Let $D$ be the foot of angle bisector from $B$ to $AC$ and $M$ the midpoint of $AC$. Since $\angle B_2BI = 90 = \angle B_1BL$ (since $B1L$ is diameter), all $B$'s are collinear. Due to cyclic quad $BB_1MD$, $B_1B \cdot BB_2 = B_2B\cdot B_2B_1 - B_2B^2 = B_2D\cdot B_2M - B_2D^2 - B_2D^2 + BD^2$ (from right triangle $B_2BD$), equals $B_2D\cdot DM + BD^2 = BD\cdot DL + BD^2 = BD\cdot BL$ (from cyclic quad $B_2BML$). Also $\angle LAD = \angle LBA$ so from similar triangles $BL\cdot LD = LA^2 = IL^2 \implies BD\cdot BL = BL^2 - IL^2 = BI\cdot BI_B$. So in triangle $B_1B_2I_B$, we have $B_I\cdot BI_B = BB_1 \cdot BB_2$ so $I$ is the orthocenter and $B_2I \perp B_1I_B$.
This post has been edited 1 time. Last edited by aaravdodhia, Aug 30, 2024, 7:21 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
78 posts
#20 • 1 Y
Y by PikaPika999
Let the antipode of $B_1$ wrt $(ABC)$ be $M$ and let the intersection of $(I_BAIC)$ and $\overline{B_1I_B}$ be $X$.Because $I_B,A,I,X,C$ are concyclic by incenter/excenter lemma we have that $\angle IXI_B = 90$ and because $M$ is the antipode of $B_1$ we have that $\angle I_BBB_1 = \angle MBB_1 = 90$,so $B_1,B,I,X$ are concyclic.Then it succifies to show that $B_2,I,X$ are collinear which is trivial by the radical axis concurrence lemma on $(ABB_1CM),(B_1BIX),(AIXCI_B)$,which shows that $\overline{B_1B},\overline{XI},\overline{AC}$ are concurrent at $B_2$.
This post has been edited 2 times. Last edited by Primeniyazidayi, Apr 6, 2025, 6:40 PM
Z K Y
N Quick Reply
G
H
=
a