Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Parallel condition and isogonal
ItzsleepyXD   1
N a few seconds ago by moony_
Source: Own , Mock Thailand Mathematic Olympiad P5
Let $ABC$ be triangle and point $D$ be $A-$ altitude of $\triangle ABC$ .
Let $E,F$ be a point on $AC$ and $AB$ such that $DE\parallel AB$ and $DF\parallel AC$ . Point $G$ is the intersection of $(AEF)$ and $(ABC)$ . Point $P$ be intersection of $(ADG)$ and $BC$ . Line $GD$ intersect circumcircle of $\triangle ABC$ again at $Q$ .
Prove that
(a) $\angle BAP = \angle QAC$ .
(b) $AQ$ bisect $BC$ .
1 reply
ItzsleepyXD
an hour ago
moony_
a few seconds ago
RMM 2013 Problem 1
dr_Civot   31
N 12 minutes ago by cursed_tangent1434
For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.
31 replies
dr_Civot
Mar 2, 2013
cursed_tangent1434
12 minutes ago
Inspired by old results
sqing   0
12 minutes ago
Source: Own
Let $  a , b , c>0  $and $  abc=1 $. Prove that
$$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a} +3 \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$$h
0 replies
sqing
12 minutes ago
0 replies
amazing balkan combi
egxa   7
N 14 minutes ago by Assassino9931
Source: BMO 2025 P4
There are $n$ cities in a country, where $n \geq 100$ is an integer. Some pairs of cities are connected by direct (two-way) flights. For two cities $A$ and $B$ we define:

$(i)$ A $\emph{path}$ between $A$ and $B$ as a sequence of distinct cities $A = C_0, C_1, \dots, C_k, C_{k+1} = B$, $k \geq 0$, such that there are direct flights between $C_i$ and $C_{i+1}$ for every $0 \leq i \leq k$;
$(ii)$ A $\emph{long path}$ between $A$ and $B$ as a path between $A$ and $B$ such that no other path between $A$ and $B$ has more cities;
$(iii)$ A $\emph{short path}$ between $A$ and $B$ as a path between $A$ and $B$ such that no other path between $A$ and $B$ has fewer cities.
Assume that for any pair of cities $A$ and $B$ in the country, there exist a long path and a short path between them that have no cities in common (except $A$ and $B$). Let $F$ be the total number of pairs of cities in the country that are connected by direct flights. In terms of $n$, find all possible values $F$

Proposed by David-Andrei Anghel, Romania.
7 replies
1 viewing
egxa
Apr 27, 2025
Assassino9931
14 minutes ago
9 Physical or online
wimpykid   0
4 hours ago
Do you think the AoPS print books or the online books are better?

0 replies
wimpykid
4 hours ago
0 replies
Three variables inequality
Headhunter   6
N 4 hours ago by lbh_qys
$\forall a\in R$ ,$~\forall b\in R$ ,$~\forall c \in R$
Prove that at least one of $(a-b)^{2}$, $(b-c)^{2}$, $(c-a)^{2}$ is not greater than $\frac{a^{2}+b^{2}+c^{2}}{2}$.

I assume that all are greater than it, but can't go more.
6 replies
Headhunter
Apr 20, 2025
lbh_qys
4 hours ago
Sequence
lgx57   8
N 5 hours ago by Vivaandax
$a_1=1,a_{n+1}=a_n+\frac{1}{a_n}$. Find the general term of $\{a_n\}$.
8 replies
lgx57
Apr 27, 2025
Vivaandax
5 hours ago
Geometric inequality
ReticulatedPython   3
N Today at 4:27 AM by ItalianZebra
Let $A$ and $B$ be points on a plane such that $AB=n$, where $n$ is a positive integer. Let $S$ be the set of all points $P$ such that $\frac{AP^2+BP^2}{(AP)(BP)}=c$, where $c$ is a real number. The path that $S$ traces is continuous, and the value of $c$ is minimized. Prove that $c$ is rational for all positive integers $n.$
3 replies
ReticulatedPython
Apr 22, 2025
ItalianZebra
Today at 4:27 AM
Transformation of a cross product when multiplied by matrix A
Math-lover1   1
N Today at 1:02 AM by greenturtle3141
I was working through AoPS Volume 2 and this statement from Chapter 11: Cross Products/Determinants confused me.
[quote=AoPS Volume 2]A quick comparison of $|\underline{A}|$ to the cross product $(\underline{A}\vec{i}) \times (\underline{A}\vec{j})$ reveals that a negative determinant [of $\underline{A}$] corresponds to a matrix which reverses the direction of the cross product of two vectors.[/quote]
I understand that this is true for the unit vectors $\vec{i} = (1 \ 0)$ and $\vec{j} = (0 \ 1)$, but am confused on how to prove this statement for general vectors $\vec{v}$ and $\vec{w}$ although its supposed to be a quick comparison.

How do I prove this statement easily with any two 2D vectors?
1 reply
Math-lover1
Yesterday at 10:29 PM
greenturtle3141
Today at 1:02 AM
Geometry books
T.Mousavidin   4
N Today at 12:10 AM by compoly2010
Hello, I wanted to ask if anybody knows some good books for geometry that has these topics in:
Desargues's Theorem, Projective geometry, 3D geometry,
4 replies
T.Mousavidin
Yesterday at 4:25 PM
compoly2010
Today at 12:10 AM
trigonometric functions
VivaanKam   3
N Yesterday at 10:08 PM by aok
Hi could someone explain the basic trigonometric functions to me like sin, cos, tan etc.
Thank you!
3 replies
VivaanKam
Yesterday at 8:29 PM
aok
Yesterday at 10:08 PM
Inequalities
sqing   16
N Yesterday at 5:25 PM by martianrunner
Let $ a,b \in [0 ,1] . $ Prove that
$$\frac{a}{ 1-ab+b }+\frac{b }{ 1-ab+a } \leq 2$$$$ \frac{a}{ 1+ab+b^2 }+\frac{b }{ 1+ab+a^2 }+\frac{ab }{2+ab }  \leq 1$$$$\frac{a}{ 1-ab+b^2 }+\frac{b }{ 1-ab+a^2 }+\frac{1 }{1+ab  }\leq \frac{5}{2}$$$$\frac{a}{ 1-ab+b^2 }+\frac{b }{ 1-ab+a^2 }+\frac{1 }{1+2ab  }\leq \frac{7}{3}$$$$\frac{a}{ 1+ab+b^2 }+\frac{b }{ 1+ab+a^2 } +\frac{ab }{1+ab }\leq \frac{7}{6 }$$
16 replies
sqing
Apr 25, 2025
martianrunner
Yesterday at 5:25 PM
Geometry Angle Chasing
Sid-darth-vater   6
N Yesterday at 2:18 PM by sunken rock
Is there a way to do this without drawing obscure auxiliary lines? (the auxiliary lines might not be obscure I might just be calling them obscure)

For example I tried rotating triangle MBC 80 degrees around point C (so the BC line segment would now lie on segment AC) but I couldn't get any results. Any help would be appreciated!
6 replies
Sid-darth-vater
Apr 21, 2025
sunken rock
Yesterday at 2:18 PM
BABBAGE'S THEOREM EXTENSION
Mathgloggers   0
Yesterday at 12:18 PM
A few days ago I came across. this interesting result is someone interested in proving this.

$\boxed{\sum_{k=1}^{p-1} \frac{1}{k} \equiv \sum_{k=p+1}^{2p-1} \frac{1}{k} \equiv \sum_{k=2p+1}^{3p-1}\frac{1}{k} \equiv.....\sum_{k=p(p-1)+1}^{p^2-1}\frac{1}{k} \equiv 0(mod p^2)}$
0 replies
Mathgloggers
Yesterday at 12:18 PM
0 replies
Inspired by Polish 2025
sqing   0
Apr 4, 2025
Source: Own
Let $ a,b,c,d $ be reals such that $ a+b+c+d =0 $ and $ a^2+b^2+c^2+d^2=12.$ Prove that$$-3\leq  abcd\leq 9$$Let $ a,b,c,d $ be reals such that $ a+b+c+d =0 $ and $ abcd=-3.$ Prove that$$a^2+b^2+c^2+d^2 \geq 12$$Let $ a,b,c,d $ be reals such that $ a+b+c+d =0 $ and $ abcd=9.$ Prove that$$a^2+b^2+c^2+d^2 \geq 12$$
0 replies
sqing
Apr 4, 2025
0 replies
Inspired by Polish 2025
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41900 posts
#1
Y by
Let $ a,b,c,d $ be reals such that $ a+b+c+d =0 $ and $ a^2+b^2+c^2+d^2=12.$ Prove that$$-3\leq  abcd\leq 9$$Let $ a,b,c,d $ be reals such that $ a+b+c+d =0 $ and $ abcd=-3.$ Prove that$$a^2+b^2+c^2+d^2 \geq 12$$Let $ a,b,c,d $ be reals such that $ a+b+c+d =0 $ and $ abcd=9.$ Prove that$$a^2+b^2+c^2+d^2 \geq 12$$
This post has been edited 1 time. Last edited by sqing, Apr 4, 2025, 12:00 PM
Z K Y
N Quick Reply
G
H
=
a