1994 AHSME Problems/Problem 23
Contents
[hide]Problem
In the -plane, consider the L-shaped region bounded by horizontal and vertical segments with vertices at and . The slope of the line through the origin that divides the area of this region exactly in half is
Solution
Let the vertices be . It is easy to see that the line must pass through . Let the line intersect at the point (i.e. the point units below ). Since the quadrilateral and pentagon must have the same area, we have the equation . This simplifies into , or , so . Therefore the slope of the line is
Solution 2
Consider the small rectangle between and with area . If we exclude that area then the shape becomes a much simpler, its just a rectangle. In order to offset the exclusion of that area from the shape below the line, we must also exclude a shape with the same area above the line. We want the remainder after excluding both areas to be simple, so exclude a rectangle between and and and for some unknown . For the area to be the same we need , or . After excluding our two offsetting areas, we're left with a rectangle from to and to . The area of this region is clearly bisected by its diagonal line. The line passes through and so its slope is and the answer is
See Also
1994 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.