1994 AHSME Problems/Problem 9

Problem

If $\angle A$ is four times $\angle B$, and the complement of $\angle B$ is four times the complement of $\angle A$, then $\angle B=$

$\textbf{(A)}\ 10^{\circ} \qquad\textbf{(B)}\ 12^{\circ} \qquad\textbf{(C)}\ 15^{\circ} \qquad\textbf{(D)}\ 18^{\circ} \qquad\textbf{(E)}\ 22.5^{\circ}$

Solution

Let $\angle A=x$ and $\angle B=y$. From the first condition, we have $x=4y$. From the second condition, we have \[90-y=4(90-x).\] Substituting $x=4y$ into the previous equation and solving yields \begin{align*}90-y=4(90-4y)&\implies 90-y=360-16y\\&\implies 15y=270\\&\implies y=\boxed{\textbf{(D) }18^\circ.}\end{align*}

--Solution by TheMaskedMagician

See Also

1994 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png