# 2006 AMC 10A Problems/Problem 11

## Problem

Which of the following describes the graph of the equation $(x+y)^2=x^2+y^2$? $\mathrm{(A) \ } \textrm{the\,empty\,set}\qquad \mathrm{(B) \ } \textrm{one\,point}\qquad \mathrm{(C) \ } \textrm{two\,lines} \qquad \mathrm{(D) \ } \textrm{a\,circle} \qquad \mathrm{(E) \ } \textrm{the\,entire\,plane}$

## Solution

Expanding the left side, we have $x^2+2xy+y^2=x^2+y^2\Longrightarrow 2xy=0\Longrightarrow xy=0\Longrightarrow x = 0 \textrm{ or } y = 0$

Thus there are two lines described in this graph, the horizontal line $y = 0$ and the vertical line $x=0$. Thus, our answer is $\mathrm{(C) \ }$.

## See also

 2006 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 10 Followed byProblem 12 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS