2006 AMC 10A Problems/Problem 16

Problem

A circle of radius 1 is tangent to a circle of radius 2. The sides of $\triangle ABC$ are tangent to the circles as shown, and the sides $\overline{AB}$ and $\overline{AC}$ are congruent. What is the area of $\triangle ABC$? [asy] size(200); pathpen = linewidth(0.7); pointpen = black; real t=2^0.5; D((0,0)--(4*t,0)--(2*t,8)--cycle); D(CR((2*t,2),2)); D(CR((2*t,5),1)); D('B', (0,0),SW); D('C',(4*t,0), SE); D('A', (2*t, 8), N); D((2*t,2)--(2*t,4)); D((2*t,5)--(2*t,6)); MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W);[/asy]

$\mathrm{(A) \ } \frac{35}{2}\qquad\mathrm{(B) \ } 15\sqrt{2}\qquad\mathrm{(C) \ } \frac{64}{3}\qquad\mathrm{(D) \ } 16\sqrt{2}\qquad\mathrm{(E) \ } 24\qquad$

Solution

Let the centers of the smaller and larger circles be $O_1$ and $O_2$ , respectively. Let their tangent points to $\triangle ABC$ be $D$ and $E$, respectively. We can then draw the following diagram:

[asy] size(200); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); real t=2^0.5; D((0,0)--(4*t,0)--(2*t,8)--cycle);  D(CR(D((2*t,2)),2)); D(CR(D((2*t,5)),1)); D('B', (0,0),SW); D('C',(4*t,0), SE); D('A', (2*t, 8), N); pair A = foot((2*t,2),(2*t,8),(4*t,0)), B = foot((2*t,5),(2*t,8),(4*t,0)); D((2*t,0)--(2*t,8)); D((2*t,2)--D(A)); D((2*t,5)--D(B)); D(rightanglemark((2*t,2),A,(4*t,0))); D(rightanglemark((2*t,5),B,(4*t,0))); MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W); MP("F",(2*t,0)); MP("O_1",(2*t,5),W); MP("O_2",(2*t,2),W); MP("D",B,NE); MP("E",A,NE); [/asy]

We see that $\triangle ADO_1 \sim \triangle AEO_2 \sim \triangle AFC$. Using the first pair of similar triangles, we write the proportion:

$\frac{AO_1}{AO_2} = \frac{DO_1}{EO_2} \Longrightarrow \frac{AO_1}{AO_1 + 3} = \frac{1}{2} \Longrightarrow AO_1 = 3$

By the Pythagorean Theorem, we have $AD = \sqrt{3^2-1^2} = \sqrt{8}$.

Now using $\triangle ADO_1 \sim \triangle AFC$,

$\frac{AD}{AF} = \frac{DO_1}{FC} \Longrightarrow \frac{2\sqrt{2}}{8} = \frac{1}{FC} \Longrightarrow FC = 2\sqrt{2}$

Hence, the area of the triangle is \[\frac{1}{2}\cdot AF \cdot BC = \frac{1}{2}\cdot AF \cdot (2\cdot CF) = AF \cdot CF = 8\left(2\sqrt{2}\right) = \boxed{16\sqrt{2}\ \mathrm{(D)}}\]

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS