# 2021 AMC 12A Problems/Problem 19

## Problem

How many solutions does the equation $\sin \left( \frac{\pi}2 \cos x\right)=\cos \left( \frac{\pi}2 \sin x\right)$ have in the closed interval $[0,\pi]$?

$\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3\qquad \textbf{(E) }4$

## Solution 1 (Inverse Trigonometric Functions)

The ranges of $\frac{\pi}2 \sin x$ and $\frac{\pi}2 \cos x$ are both $\left[-\frac{\pi}2, \frac{\pi}2 \right],$ which is included in the range of $\arcsin,$ so we can use it with no issues. \begin{align*} \frac{\pi}2 \cos x &= \arcsin \left( \cos \left( \frac{\pi}2 \sin x\right)\right) \\ \frac{\pi}2 \cos x &= \arcsin \left( \sin \left( \frac{\pi}2 - \frac{\pi}2 \sin x\right)\right) \\ \frac{\pi}2 \cos x &= \frac{\pi}2 - \frac{\pi}2 \sin x \\ \cos x &= 1 - \sin x \\ \cos x + \sin x &= 1. \end{align*} This only happens at $x = 0, \frac{\pi}2$ on the interval $[0,\pi],$ because one of $\sin$ and $\cos$ must be $1$ and the other $0.$ Therefore, the answer is $\boxed{\textbf{(C) }2}.$

~Tucker

## Solution 2 (Cofunction Identity)

By the Cofunction Identity $\cos\theta=\sin\left(\frac{\pi}{2}-\theta\right),$ we rewrite the given equation: $$\sin \left(\frac{\pi}2 \cos x\right) = \sin \left(\frac{\pi}2 - \frac{\pi}2 \sin x\right).$$ Recall that if $\sin\theta=\sin\phi,$ then $\theta=\phi+2n\pi$ or $\theta=\pi-\phi+2n\pi$ for some integer $n.$ Therefore, we have two cases:

1. $\boldsymbol{\frac{\pi}2 \cos x = \left(\frac{\pi}2 - \frac{\pi}2 \sin x\right) + 2n\pi}$ for some integer $\boldsymbol{n}$

We rearrange and simplify: $$\sin x + \cos x = 1 + 4n.$$ By rough constraints, we know that $-2 < \sin x + \cos x < 2,$ from which $-2 < 1 - 4n < 2.$ The only possibility is $n=0,$ so \begin{align*} \sin x + \cos x &= 1 && (*) \\ \sin^2 x + \cos^2 x + 2\sin x \cos x &= 1 \\ 2\sin x \cos x &= 0 \\ \sin(2x) &= 0 \\ 2x &= k\pi \\ x &= \frac{k\pi}{2} \end{align*} for some integer $k.$

We get $x=0,\frac{\pi}{2}$ for this case. Note that $x=\pi$ is an extraneous solution by squaring $(*).$

2. $\boldsymbol{\frac{\pi}2 \cos x = \pi - \left(\frac{\pi}2 - \frac{\pi}2 \sin x\right) + 2n\pi}$ for some integer $\boldsymbol{n}$

Similar to Case 1, we conclude that $n=0,$ so $$\cos x - \sin x = 1.$$ We get $x=0$ for this case.

Together, we obtain $\boxed{\textbf{(C) }2}$ solutions: $x=0,\frac{\pi}{2}.$

~MRENTHUSIASM

## Solution 3 (Graphs and Analyses)

This problem is equivalent to counting the intersections of the graphs of $y=\sin\left(\frac{\pi}{2}\cos x\right)$ and $y=\cos\left(\frac{\pi}{2}\sin x\right)$ in the closed interval $[0,\pi].$ We construct a table of values, as shown below: $$\begin{array}{c|ccc} & & & \\ [-2ex] & \boldsymbol{x=0} & \boldsymbol{x=\frac{\pi}{2}} & \boldsymbol{x=\pi} \\ [1.5ex] \hline & & & \\ [-1ex] \boldsymbol{\cos x} & 1 & 0 & -1 \\ [1.5ex] \boldsymbol{\frac{\pi}{2}\cos x} & \frac{\pi}{2} & 0 & -\frac{\pi}{2} \\ [1.5ex] \boldsymbol{\sin\left(\frac{\pi}{2}\cos x\right)} & 1 & 0 & -1 \\ [1.5ex] \hline & & & \\ [-1ex] \boldsymbol{\sin x} & 0 & 1 & 0 \\ [1.5ex] \boldsymbol{\frac{\pi}{2}\sin x} & 0 & \frac{\pi}{2} & 0 \\ [1.5ex] \boldsymbol{\cos\left(\frac{\pi}{2}\sin x\right)} & 1 & 0 & 1 \\ [1ex] \end{array}$$ For $x\in[0,\pi],$ note that:

• $\frac{\pi}{2}\cos x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right],$ so $\sin\left(\frac{\pi}{2}\cos x\right)\in[-1,1].$
• $\frac{\pi}{2}\sin x\in\left[0,\frac{\pi}{2}\right],$ so $\cos\left(\frac{\pi}{2}\sin x\right)\in[0,1].$

For the graphs to intersect, we need $\sin\left(\frac{\pi}{2}\cos x\right)\in[0,1].$ This occurs when $\frac{\pi}{2}\cos x\in\left[0,\frac{\pi}{2}\right].$

By the Cofunction Identity $\cos\theta=\sin\left(\frac{\pi}{2}-\theta\right),$ we rewrite the given equation: $$\sin\left(\frac{\pi}{2}\cos x\right) = \sin\left(\frac{\pi}{2}-\frac{\pi}{2}\sin x\right).$$ Since $\frac{\pi}{2}\cos x\in\left[0,\frac{\pi}{2}\right]$ and $\frac{\pi}{2}\sin x\in\left[0,\frac{\pi}{2}\right],$ it follows that $x\in\left[0,\frac{\pi}{2}\right]$ and $\frac{\pi}{2}-\frac{\pi}{2}\sin x\in\left[0,\frac{\pi}{2}\right].$

We can apply the arcsine function to both sides, then rearrange and simplify: \begin{align*} \frac{\pi}{2}\cos x &= \frac{\pi}{2}-\frac{\pi}{2}\sin x \\ \sin x + \cos x &= 1. \end{align*} From Case 1 in Solution 2, we conclude that $(0,1)$ and $\left(\frac{\pi}{2},0\right)$ are the only points of intersection, as shown below: $[asy] /* Made by MRENTHUSIASM */ size(600,200); real f(real x) { return sin(pi/2*cos(x)); } real g(real x) { return cos(pi/2*sin(x)); } draw(graph(f,0,pi),red,"y=\sin\left(\frac{\pi}{2}\cos x\right)"); draw(graph(g,0,pi),blue,"y=\cos\left(\frac{\pi}{2}\sin x\right)"); real xMin = 0; real xMax = 5/4*pi; real yMin = -2; real yMax = 2; //Draws the horizontal gridlines void horizontalLines() { for (real i = yMin+1; i < yMax; ++i) { draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); } } //Draws the vertical gridlines void verticalLines() { for (real i = xMin+pi/2; i < xMax; i+=pi/2) { draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); } } //Draws the horizontal ticks void horizontalTicks() { for (real i = yMin+1; i < yMax; ++i) { draw((-1/8,i)--(1/8,i), black+linewidth(1)); } } //Draws the vertical ticks void verticalTicks() { for (real i = xMin+pi/2; i < xMax; i+=pi/2) { draw((i,-1/8)--(i,1/8), black+linewidth(1)); } } horizontalLines(); verticalLines(); horizontalTicks(); verticalTicks(); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("x",(xMax,0),(2,0)); label("y",(0,yMax),(0,2)); pair A[]; A[0] = (pi/2,0); A[1] = (pi,0); A[2] = (0,1); A[3] = (0,0); A[4] = (0,-1); label("\frac{\pi}{2}",A[0],(0,-2.5)); label("\pi",A[1],(0,-2.5)); label("1",A[2],(-2.5,0)); label("0",A[3],(-2.5,0)); label("-1",A[4],(-2.5,0)); dot((0,1),linewidth(5)); dot((pi/2,0),linewidth(5)); add(legend(),point(E),40E,UnFill); [/asy]$ Therefore, the answer is $\boxed{\textbf{(C) }2}.$

~MRENTHUSIASM (credit given to TheAMCHub)

~ pi_is_3.14

## Video Solution (Quick and Easy)

~Education, the Study of Everything